
14 Firmware Jumpblocks.
There are a number of jumpblocks provided by the firmware. The largest of these is
the main firmware jumpblock. This is intended to be used by programs to access the
firmware routines in the lower ROM. BASIC, for instance, uses these jumps. Note,
however that the firmware does not use this jumpblock for internal communication
with itself. This means that altering the jumpblock will cause BASIC to behave
differently but will not cause the firmware to behave differently.

The most important jumpblock is the indirections jumpblock. The indirections are
jumps that are used by the firmware at key points. This allows the user to alter the
action of firmware routines. The entries in this jumpblock are not intended for the
user to call, only for the firmware to call. Altering an indirection is the method to
make the firmware behave differently.

The remaining two jumpblocks are associated with the Kernel. One is a jumpblock to
allow the user to call various useful Kernel routines to do with changing ROM states
and the like. The other is not a jumpblock as such, just an area where the routines are
at published addresses. These are general utility routines and restarts. In general
neither of these areas should be altered by the user.

The routines in these jumpblocks are briefly listed below. More complex descriptions
of the routines can be found in sections 15, 16, 17 and 18.

AMSDOS provides a number of external commands which allow the user access to
the low level disc driving and to high level disc operations.

These commands are accessed using the external command mechanism described in
section 10, i.e. The caller passes the command name to KL FIND COMMAND and far
calls the resulting routine. More complex descriptions of these commands can be
found in sections 19 and 20.

14.1 The Main Jumpblock.

The main firmware jumpblock lies in RAM between addresses #BB00 and #BD5D.
Each entry in the jumpblock occupies three bytes and is initialized to use LOW JUMP
restarts (RST 1) that cause the lower ROM to be enabled, so that the firmware
routines can be run, and the upper ROM to be disabled, so that the screen memory is
accessible while the firmware is running. Full descriptions of these routines can be
found in section 15.

After the jumpblock has been set up at EMS it is patched by the initialization of the
AMSDOS ROM to install the disc (rather than the cassette) as default but is not
otherwise altered by the firmware until the system is reinitialized. If any entries are
changed then it is the user's responsibility to undo the alterations. This can be
achieved by calling JUMP RESTORE which completely initializes the jumpblock but
this will lose any other patches, such as those made by AMSDOS. It is better to copy
the original contents of the changed entries back.

14.1.1 Entries to the Key Manager.

The Key Manager deals with the keyboard and the joysticks.

INITIALIZATION

0 #BB00 KM INITIALIZE Initialize the Key Manager.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.1

1 #BB03 KM RESET Reset the Key Manager - clear
all buffers, restore standard key
expansions and indirections.

CHARACTERS

2 #BB06 KM WAIT CHAR Wait for the next character from
the keyboard.

3 #BB09 KM READ CHAR Test if a character is available
from the keyboard.

4 #BB0C KM CHAR RETURN Return a single character to the
keyboard for next time.

191 #BD3D KM FLUSH Discard all pending characters
and keys.

5 #BB0F KM SET EXPAND Set an expansion string.

6 #BB12 KM GET EXPAND Get a character from an
expansion string.

7 #BB15 KM EXP BUFFER Allocate a buffer for expansion
strings.

KEYS

8 #BB18 KM WAIT KEY Wait for the next key from the
keyboard.

9 #BB1B KM READ KEY Test of a key is available from
the keyboard.

10 #BB1E KM TEST KEY Test if a key is pressed.

190 #BD3A KM SET LOCKS Set the Shift Lock and Caps
Lock states.

11 #BB21 KM GET STATE Fetch Caps Lock and Shift Lock
states.

12 #BB24 KM GET JOYSTICK Fetch current state of the
joystick(s).

TRANSLATION TABLES

13 #BB27 KM SET TRANSLATE Set entry in key translation
table without shift or control.

14 #BB2A KM GET TRANSLATE Get entry from key translation
table without shift or control.

15 #BB2D KM SET SHIFT Set entry in key translation
table when shift key is pressed.

16 #BD30 KM GET SHIFT Get entry from key translation
table when shift key is pressed.

17 #BB33 KM SET CONTROL Set entry in key translation
table when control key is
pressed.

Page 14.2 AMSTRAD CPC464/664/6128 FIRMWARE

18 #BB36 KM GET CONTROL Get entry form key translation
table when control key is
pressed

REPEATING

19 #BB39 KM SET REPEAT Set whether a key may repeat.

20 #BB3C KM GET REPEAT Ask if a key is allowed to
repeat.

21 #BB3F KM SET DELAY Set start up delay and repeat
speed.

22 #BB42 KM GET DELAY Get start up delay and repeat
speed.

BREAKS

23 #BB45 KM ARM BREAK Allow break events to be
generated.

24 #BB48 KM DISARM BREAK Prevent break event from being
generated.

25 #BB4B KM BREAK EVENT Generate a break event (if
armed).

14.1.2 Entries to the Text VDU.

The Text VDU is a character based screen driver.

INITIALIZATION

26 #BB4E TXT INITIALISE Initialize the Text VDU.

27 #BB51 TXT RESET Reset the Text VDU - restore
default indirections and control
code functions.

28 #BB54 TXT VDU ENABLE Allow characters to be placed
on the screen.

29 #BB57 TXT VDU DISABLE Prevent characters from being
placed on the screen.

192 #BD40 TXT ASK STATE Get state of the text VDU.

CHARACTERS

30 #BB5A TXT OUTPUT Output a character or control
code to the Text VDU.

31 #BB5D TXT WR CHAR Write a character onto the
screen.

32 #BB60 TXT RD CHAR Read a character from the
screen.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.3

33 #BB63 TXT SET GRAPHIC Turn on or off the Graphics
VDU character writing option.

WINDOWS

34 #BB66 TXT WIN ENABLE Set size of the current text
window.

35 #BB69 TXT GET WINDOW Get the size of the current text
window.

36 #BB6C TXT CLEAR WINDOW Clear current window.

CURSOR

37 #BB6F TXT SET COLUMN Set cursor horizontal position.

38 #BB72 TXT SET ROW Set cursor vertical position.

39 #BB75 TXT SET CURSOR Set cursor position.

40 #BB78 TXT GET CURSOR Ask current cursor position.

41 #BB7B TXT CUR ENABLE Allow cursor display - user.

42 #BB7E TXT CUR DISABLE Dissallow cursor display - user.

43 #BB81 TXT CUR ON Allow cursor display - system.

44 #BB84 TXT CUR OFF Dissallow cursor display
-system.

45 #BB87 TXT VALIDATE Check if a cursor position is
within the window.

46 #BB8A TXT PLACE CURSOR Put a cursor blob on the screen.

47 #BB8D TXT REMOVE CURSOR Take a cursor blob off the
screen.

INKS

48 #BB90 TXT SET PEN Set ink for writing characters.

49 #BB93 TXT GET PEN Get ink for writing characters.

50 #BB96 TXT SET PAPER Set ink for writing text
background.

51 #BB99 TXT GET PAPER Get ink for writing text
background.

52 #BB9C TXT INVERSE Swap current pen and paper
inks.

53 #BB9F TXT SET BACK Allow or dissallow background
being written.

Page 14.4 AMSTRAD CPC464/664/6128 FIRMWARE

54 #BBA2 TXT GET BACK Ask if background is being written.

MATRICES

55 #BBA5 TXT GET MATRIX Get the address of a character
matrix.

56 #BBA8 TXT SET MATRIX Set a character matrix.

57 #BBAB TXT SET M TABLE Set the user defined matrix table
address.

58 #BBAE TXT GET M TABLE Get user defined matrix table
address.

CONTROL CODES

59 #BBB1 TXT GET CONTROLS Fetch address of control code
table.

STREAMS

60 #BBB4 TXT STR SELECT Select Text VDU stream.

61 #BBB7 TXT SWAP STREAMS Swap the states of two streams.

14.1.3 Entries to the Graphics VDU

The Graphics VDU deals with individual pixels.

INITIALIZATION

62 #BBBA GRA INITIALISE Initialize the Graphics VDU.

63 #BBBD GRA RESET Reset the Graphics VDU -restore
standard indirections.

193 #BD43 GRA DEFAULT Set default Graphics VDU modes.

 CURRENT POSITION

64 #BBC0 GRA MOVE ABSOLUTE Move to an absolute position.

65 #BBC3 GRA MOVE RELATIVE Move relative to current position.

66 #BBC6 GRA ASK CURSOR Get the current position.

67 #BBC9 GRA SET ORIGIN Set the origin of the user
coordinates.

68 #BBCC GRA GET ORIGIN Get the origin of the user
coordinates.

197 #BD4F GRA FROM USER Convert user coordinates to base
coordinates.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.5

WINDOW

69 #BBCF GRA WIN WIDTH Set left and right edges of the
graphics window.

70 #BBD2 GRA WIN HEIGHT Set top and bottom edges of
the graphics window.

71 #BBD5 GRA GET W WIDTH Get the left and right edges of
the graphics window.

72 #BBD8 GRA GET W HEIGHT Get the top and bottom edges
of the graphics window.

73 #BBDB GRA CLEAR WINDOW Clear the graphics window.

 INKS

74 #BBDE GRA SET PEN Set the graphics plotting ink.

75 #BBE1 GRA GET PEN Get the current graphics
plotting ink.

76 #BBE4 GRA SET PAPER Set the graphics background
ink.

77 #BBE7 GRA GET PAPER Get the current graphics
background ink.

194 #BD46 GRA SET BACK Set whether background is to
be written.

PLOTTING

78 #BBEA GRA PLOT ABSOLUTE Plot a point at an absolute
position.

79 #BBED GRA PLOT RELATIVE Plot a point relative to the
current position.

TESTING

80 #BBF0 GRA TEST ABSOLUTE Test a point at an absolute
position.

81 #BBF3 GRA TEST RELATIVE Test a point relative to the
current position.

LINE DRAWING

82 #BBF6 GRA LINE ABSOLUTE Draw a line to an absolute
position.

83 #BBF9 GRA LINE RELATIVE Draw a line relative to the
current position.

195 #BD49 GRA SET FIRST Set whether first point of a line
is to be plotted.

196 #BD4C GRA SET LINE MASK Set mask for drawing lines.

Page 14.6 AMSTRAD CPC464/664/6128 FIRMWARE

AREA FILLING

198 #BD52 GRA FILL Fill an area of the screen.

 CHARACTER DRAWING

84 #BBFC GRA WR CHAR Put a character on the screen at
the current graphics position.

14.1.4 Entries to the Screen Pack

The Screen Pack interfaces the Text and Graphics VDUs to the screen hardware.
Screen functions that affect both text and graphics (e.g. ink colours) are located in the
Screen Pack.

INITIALIZATION

85 #BBFF SCR INITIALISE Initialize the Screen Pack.

86 #BC02 SCR RESET Reset the Screen Pack – restore
standard indirections, ink
colours and flash rates.

 SCREEN HARDWARE

87 #BC05 SCR SET OFFSET Set the offset of the start of the
screen.

88 #BC08 SCR SET BASE Set the area of RAM to use for
the screen memory.

199 #BD55 SCR SET POSITION Set the location of the screen
memory without moving the
screen.

89 #BC0B SCR GET LOCATION Fetch current base and offset
settings.

 MODE

90 #BC0E SCR SET MODE Set screen into new mode.

91 #BC11 SCR GET MODE Ask the current screen mode.

92 #BC14 SCR CLEAR Clear the screen (to ink zero).

93 #BC17 SCR CHAR LIMITS Ask size of the screen in
characters.

 SCREEN ADDRESSES

94 #BC1A SCR CHAR POSITION Convert physical coordinates to
a screen position.

95 #BC1D SCR DOT POSITION Convert base coordinates to a
screen position.

92 #BC20 SCR NEXT BYTE Step a screen address right one
byte.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.7

97 #BC23 SCR PREV BYTE Step a screen address left one
byte.

98 #BC26 SCR NEXT LINE Step a screen address down one
line.

99 #BC29 SCR PREV LINE Step a screen address up one line.

INKS

100 #BC2C SCR INK ENCODE Encode an ink to cover all pixels
in a byte.

101 #BC2F SCR INK DECODE Decode an encoded ink.

102 #BC32 SCR SET INK Set the colours in which to
display an ink.

103 #BC35 SCR GET INK Ask the colours an ink is
currently displayed in.

104 #BC38 SCR SET BORDER Set the colours in which to
display the border.

105 #BC3B SCR GET BORDER Ask the colours the border is
currently displayed in.

106 #BC3E SCR SET FLASHING Set the flash periods.

107 #BC41 SCR GET FLASHING Ask the current flash periods.

MISCELLANEOUS

108 #BC44 SCR FILL BOX Fill a character area of the screen
with an ink.

109 #BC47 SCR FLOOD BOX Fill a byte area of the screen with
an ink.

110 #BC4A SCR CHAR INVERT Invert a character position.

111 #BC4D SCR HW ROLL Move the whole screen up or
down eight pixel lines (one
character).

112 #BC50 SCR SW ROLL Move an area of the screen up or
down eight pixel lines (one
character).

113 #BC53 SCR UNPACK Expand a character matrix for the
current screen mode.

114 #BC56 SCR REPACK Compress a character matrix to
the standard form.

Page 14.8 AMSTRAD CPC464/664/6128 FIRMWARE

115 #BC59 SCR ACCESS Set the screen write mode for
the Graphics VDU

116 #BC62 SCR PIXELS Write a pixel to the screen
ignoring the Graphic VDU
write mode.

LINE DRAWING

117 #BC5F SCR HORIZONTAL Plot a purely horizontal line.

118 #BC62 SCR VERTICAL Plot a purely vertical line.

14.1.5 Entries to the Cassette Manager/AMSDOS

The Cassette Manager handles reading files from tape and writing files to tape.
AMSDOS intercepts the starred entries and redirects them so they read from and write
to disc. The external commands TAPE and DISC can be used to switch between the
tape and disc versions of these routines (see section 14.6).

INITIALIZATION

119 #BC65 CAS INITIALISE Initialize the Cassette Manager
- close all streams, set default
speed and enable messages.

120 #BC68 CAS SET SPEED Set the write speed.

121 #BC6B CAS NOISY Enable or disable prompt
messages.

READING FILES

122 #BC6E CAS START MOTOR Start the cassette motor.

123 #BC71 CAS STOP MOTOR Stop the cassette motor.

124 #BC74 CAS RESTORE MOTOR Restore previous state of
cassette motor.

READING FILES

125 #BC8C *CAS IN OPEN Open a file for input.

126 #BC8F *CAS IN CLOSE Close the input file properly.

127 #BC7D *CAS IN ABANDON Close the input file
immediately.

128 #BC80 *CAS IN CHAR Read a character from the
input file.

129 #BC83 *CAS IN DIRECT Read the input file into store.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.9

130 #BC86 *CAS RETURN Put the last character read
back.

131 #BC89 *CAS TEST EOF Have we reached the end of
the file yet?

WRITING FILES

132 #BC8C *CAS OUT OPEN Open a file for output.

133 #BC8F *CAS OUT CLOSE Close the output file properly.

134 #BC92 *CAS OUT ABANDON Close the output file
immediately.

135 #BC95 *CAS OUT CHAR Write a character to the
output file.

136 #BC98 *CAS OUT DIRECT Write the output file directly
from store.

CATALOGUING

137 #BC9B *CAS CATALOG Generate a catalogue from the
tape.

RECORDS

138 #BC9E CAS WRITE Write a record to tape.

139 #BCA1 CAS READ Read a record from tape.

140 #BCA4 CAS CHECK Compare a record on tape
with the contents of store.

14.1.6 Entries to the Sound Manager.

The Sound Manager controls the sound chip.

INITIALIZATION

141 #BCA7 SOUND RESET Reset the Sound Manager -
shut the sound chip up and
clear all sound queues.

SOUND QUEUES

142 #BCAA SOUND QUEUE Add a sound to a sound
queue.

143 #BCAD SOUND CHECK Ask if there is space in a
sound queue.

Page 14.10 AMSTRAD CPC464/664/6128 FIRMWARE

144 #BCB0 SOUND ARM EVENT Set up an event to be run when
a sound queue becomes not
full.

SOUNDS

145 #BCB3 SOUND RELEASE Allows sounds to happen.

146 #BCB6 SOUND HOLD Stop all sound in mid flight.

147 #BCB9 SOUND CONTINUE Restart sound after they have
been stopped.

ENVELOPES

148 #BCBC SOUND AMPL ENVELOPE Set up an amplitude envelope.

149 #BCBF SOUND TONE ENVELOPE Set up a tone envelope.

150 #BCC2 SOUND A ADDRESS Get the address of an
amplitude envelope.

151 #BCC5 SOUND T ADDRESS Get the address of a tone
envelope.

14.1.7 Entries to the Kernel

The Kernel handles synchronous and asynchronous events. It is also in charge of the
store map and switching ROMs on and off. Apart from the entries listed below, the
Kernel has its own jumpblock and a number of routines whose addresses are
published. These extra entries are listed in sections 14.3 and 14.4 below.

INITIALIZATION

152 #BCC8 KL CHOKE OFF Reset the Kernel - clears all
event queues etc.

153 #BCCB KL ROM WALK Find and initialize all
background ROMs.

154 #BCCE KL INIT BACK Initialize a particular
background ROM.

155 #BCD1 KL LOG EXT Introduce an RSX to the
firmware.

156 #BCD4 KL FIND COMMAND Search for an RSX or
background ROM or
foreground ROM to process a
command.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.11

FRAME FLYBACK LIST

157 #BCD7 KL NEW FRAME FLY Initialize and put a block onto
the frame flyback list.

158 #BCDA KL ADD FRAME FLY Put a block onto the frame
flyback list.

159 #BCDD KL DEL FRAME FLY Remove a block from the
frame flyback list.

FAST TICKER LIST

160 #BCE0 KL NEW FAST TICKER Initialize and put a block onto
the fast tick list.

161 #BCE3 KL ADD FAST TICKER Put a block onto the fast tick
list.

162 #BCE6 KL DEL FAST TICKER Remove a block from the fast
tick list.

TICK LIST

163 #BCE9 KL ADD TICKER Put a block onto the tick list.

164 #BCEC KL DEL TICKER Remove a block from the tick
list.

EVENTS

165 #BCEF KL INIT EVENT Initialize an event block.

166 #BCF2 KL EVENT 'Kick' an event block.

167 #BCF5 KL SYNC RESET Clear synchronous event
queue.

168 #BCF8 KL DEL SYNCHRONOUS Remove a synchronous event
from the event queue.

169 #BCFB KL NEXT SYNC Get the next event from the
queue.

170 #BCFE KL DO SYNC Perform an event routine.

171 #BD01 KL DONE SYNC Finish processing an event.

172 #BD04 KL EVENT DISABLE Disable normal synchronous
events.

173 #BD07 KL EVENT ENABLE Enable normal synchronous
events.

174 #BD0A KL DISARM EVENT Prevent an event from
occurring.

Page 14.12 AMSTRAD CPC464/664/6128 FIRMWARE

ELAPSED TIME

175 #BD0D KL TIME PLEASE Ask the elapsed time.

176 #BD10 KL TIME SET Set the elapsed time.

BANK SWITCHING

201 #BD5B KL BANK SWITCH Select a memory organization.

14.1.8 Entries to the Machine Pack

The Machine Pack provides an interface to the machine hardware. Most packs use
Machine to access any hardware they use. The major exception is the Cassette
Manager which, for speed reasons, performs its own hardware access.

PROGRAMS

177 #BD13 MC BOOT PROGRAM Load and run a foreground
program.

178 #BD16 MC START PROGRAM Run a foreground program.

SCREEN

179 #BD19 MC WAIT FLYBACK Wait for frame flyback.

180 #BD1C MC SET MODE Set the screen mode.

181 #BD1F MC SCREEN OFFSET Set the screen offset.

182 #BD22 MC CLEAR INKS Set all inks to one colour.

183 #BD25 MC SET INKS Set colours of all the inks.

PRINTER

184 #BD28 MC RESET PRINTER Reset the printer indirection.

200 #BD58 MC PRINT TRANSLATION Set the printer translation
table.

185 #BD2B MC PRINT CHAR Translate a character then
send it to the Centronics port.

186 #BD2E MC BUSY PRINTER Test if the Centronics port is
busy.

187 #BD31 MC SEND PRINTER Send a character to the
Centronics port.

SOUND CHIP

188 #BD34 MC SOUND REGISTER Send data to a sound chip
register.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.13

14.1.9 Entries to Jumper

Jumper sets up the main jumpblock.

INITIALIZATION

189 #BD37 JUMP RESTORE Restore the standard
jumpblock.

14.2 Firmware Indirections

The firmware indirections listed here are taken at key points in the firmware thus
allowing the user to provide substitute routines for many firmware actions, without
having to replace a complete firmware package. These indirections are not intended
for the user to call - there is usually a higher level routine in the main firmware
jumpblock that is more suitable.

The indirections are set up by the pack to whom they apply whenever its reset (or
initialize) routine is called and during EMS; they are not otherwise altered by the
firmware.

The indirections are all three bytes long and use standard jump instructions (#C3). If a
ROM state other than upper ROMs disabled and lower ROM enabled is required then
the appropriate restart instruction might be substituted (see section 2.3). The
indirections are to be found between #BDCD and #BDF6.

At this level of operation very little validation is carried out. If incorrect parameters
are passed or a substitute routine corrupts a register in defiance of the documented
interface then the firmware will probably cease to function as expected.

More detailed descriptions of these routines can be found in section 16.

14.2.1 Text VDU Indirections

0 #BDCD TXT DRAW CURSOR Place the cursor blob on the
screen (if enabled).

1 #BDD0 TXT UNDRAW CURSOR Remove the cursor blob from
the screen (if enabled).

2 #BDD3 TXT WRITE CHAR Write a character onto the
screen.

3 #BDD6 TXT UNWRITE Read a character from the
screen.

4 #BDD9 TXT OUT ACTION Output a character or control
code.

14.2.2 Graphics VDU Indirections

5 #BDDC GRA PLOT Plot a point

6 #BDDF GRA TEST Test a point

7 #BDE2 GRA LINE Draw a line

Page 14.14 AMSTRAD CPC464/664/6128 FIRMWARE

14.2.3 Screen Pack Indirections

8 #BDE5 SCR READ Read a pixel from the screen.

9 #BDE8 SCR WRITE Write a pixel(s) to the screen
using the current graphics
write mode.

10 #BDEB SCR MODE CLEAR Clear the screen to ink 0.

14.2.4 Keyboard Manager Indirections

11 #BDEE KM TEST BREAK Test for break (or reset).

13 #BDF4 KM SCAN KEYS Scan the keyboard.

14.2.5 Machine Pack Indirections

12 #BDF1 MC WAIT PRINTER Print a character or time out.

14.3 The High Kernel Jumpblock

The high Kernel jumpblock is provided to allow the user to turn ROMs on and off and
to access memory underneath ROMs while they are enabled. The entries in this
jumpblock are not all jump instructions, some entries are the start of routines, thus the
user should not alter any of the entries in this jumpblock. The high Kernel jumpblock
occupies store from #B900 upwards. More detailed descriptions of the routines in it
can be found in section 17.

0 #B900 KL U ROM ENABLE Turn on the current upper
ROM.

1 #B903 KL U ROM DISABLE Turn off the upper ROM.

2 #B906 KL L ROM ENABLE Turn on the lower ROM.

3 #B909 KL L ROM DISABLE Turn off the lower ROM.

4 #B90C KL ROM RESTORE Restore the previous ROM
state.

5 #B90F KL ROM SELECT Select a particular upper
ROM.

6 #B912 KL CURR SELECTION Ask which upper ROM is
currently selected.

7 #B915 KL PROBE ROM Ask class and version of a
ROM.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.15

8 #B918 KL ROM DESELECT Restore the previous upper
ROM selection.

9 #B91B KL LDIR Move store (LDIR) with ROMs
disabled.

10 #B91E KL LDDR Move store (LDDR) with ROMs
disabled.

11 #B921 KL POLL SYNCHRONOUS Check if an event with higher
priority than the current event
is pending.

14 #B92A KL SCAN NEEDED Ensure keyboard is scanned at
next opportunity.

 (N.B> there are no entries 12 or 13).

14.4 The Low Kernel Jumpblock.

The Kernel provides a number of useful routines in the area of memory between
#0000 and #003F. These are available, in some cases, both as a published routine
address and as a restart instruction. In general the routines are available both in ROM
and RAM so whether the lower ROM is enabled does not matter. There are also a
couple of areas available for the user to patch to trap RST 6s and interrupts from
external hardware.

The low Kernel jumpblock is not intended for the user to alter. However, it may be
necessary to alter it under certain circumstances. In particular the INTERRUPT
ENTRY (by patching the jump at #0038) or the RESET ENTRY (by patching the bytes
from #0000..#0007). If a program does change any locations in the jumpblock (other
than those in the USER RESTART or EXT INTERRUPT areas) then it is the
program's responsibility to ensure that the lower ROM is enabled or the original
contents are restored when any other programs runs. In particular the program must
sort out the state when interrupts occur (hence the need to patch the INTERRUPT
ENTRY).

More detailed descriptions of the routines in this jumpblock can be found in section
18.

#0000 RST 0 RESET ENTRY Completely reset the machine
as if powered up.

#0008 RST 1 LOW JUMP Jump to lower ROM or RAM,
takes an inline 'low address' to
jump to.

#000B KL LOW PCHL Jump to lower ROM or RAM,
HL contains the 'low address' to
jump to.

#000E PCBC INSTRUCTION Jump to address in BC.

Page 14.16 AMSTRAD CPC464/664/6128 FIRMWARE

#0010 RST 2 SIDE CALL Call to a sideways ROM, takes inline
'side address' to call.

#0013 KL SIDE PCHL Call to a sideways ROM, HL contains
'side address' to call.

#0016 PCDE INSTRUCTION Jump to address in DE.

#0018 RST 3 FAR CALL Call a routine in any ROM or RAM,
takes an inline address of the 'far
address' to call.

#001B KL FAR PCHL Call a routine in any ROM or RAM, C
and HL contain the 'far address' to call.

#001E PCHL INSTRUCTION Jump to address in HL.

#0020 RST 4 RAM LAM LD A,(HL) with all ROMs disabled.

#0023 KL FAR ICALL Call a routine in any ROM or RAM, HL
points at the 'far address' to call.

#0028 RST 5 FIRM JUMP Jump to lower ROM, takes an inline
address to jump to.

#0030 RST 6 USER RESTART ROM version saves current ROM state in
#002B, turns the lower ROM off and
jumps to the RAM version. RAM version
may be patched by the user between
#0030 and #0037 inclusively.

#0038 RST 7 INTERRUPT ENTRY This restart is not available as it is used
for interrupts (Z80 interrupt mode 1).

#003B EXT INTERRUPT When an interrupt occurs on the
expansion port the firmware calls
location #003B in RAM. The user may
patch between #003B and #003F
inclusive to trap this occurrence.

AMSTRAD CPC464/664/6128 FIRMWARE Page 14.17

	14.1.5 Entries to the Cassette Manager/AMSDOS

