
BCPL
THE SYSTEMS

PROGRAMMING LANGUAGE

Amstrad PCW8256/8512
Amstrad CPC6128/664/464

BCPL
THE SYSTEMS PROGRAMMING LANGUAGE

Amstrad PCW8256/8512
Amstrad CPC6128/664/464

by Phillip Blenkinsopp

CONTENTS

1 About BCPL 3
2 Using Arnor BCPL under CP/M 5
3 Using Arnor BCPL under AMSDOS 8
4 Compiler options 12
5 Some key facts about BCPL 14
6 Two BCPL programs 16
7 Summary of the BCPL language 18
8 The Arnor BCPL libraries 26
9 Differences from standard BCPL 49

APPENDICES

1 Technical information 51
2 Summary and index of library routines 54
3 Portability 56
4 Error messages 57

Copyright © Arnor Ltd., 1986 Issue 1, 1986 (v1.00/2.00)

 Amstrad is a registered trademark of Amstrad Consumer Electronics plc.
CP/M and CP/M Plus are trademarks of Digital Research Inc.

All rights reserved. It is illegal to reproduce or transmit either this manual
or the accompanying computer program in any form without the written
permission of the copyright holder. Software piracy is theft.

The BCPL compiler was developed using the MAXAM assembler ROM.
This manual was written on the PROTEXT word processor and checked

using PROSPELL.

Arnor Ltd., 118 Whitehorse Road, Croydon, CR0 2JF.

1. ABOUT BCPL
BCPL is often described as a "systems programming language". This

makes BCPL sound very grand and technical, but this is not the case. BCPL is
certainly a very good language for writing programs such as operating systems,
compilers and word processors but the features that make BCPL ideal for these
applications also make it an excellent general purpose language.

What are these features? First, flexibility. BCPL programmers are not
constrained by rules as to which operations can be performed on which type of
variable. Indeed there are no different variable types - all variables are simple
numbers and other types and structures are achieved by using variables
differently. This makes BCPL very different from other languages such as BASIC
and PASCAL. A string is treated as a variable pointing to a string, similarly a
vector. Even procedures are simply variables containing the address of the
procedure, and these may be assigned to or passed as parameters.

This flexibility allows the BCPL programmer to access any part of memory
(indeed any individual bit) and so do things that can normally only be done in
machine code. Of course freedom always carries a price - responsibility. In
languages such as PASCAL the compiler detects an attempt to perform an illegal
or meaningless operation. In BCPL it rarely does so and it is quite possible to
crash the system by corrupting the system memory or jumping to an illegal
address.

An essential book to read

This manual gives an introduction to certain aspects of BCPL, as well as
a summary of the facilities implemented in this version. It does not attempt to be a
complete guide of BCPL programming, and assumes some knowledge of
programming (for example in BASIC). Note that examples of the use of most
features of BCPL are to be found among the example programs contained on the
disc.

The definitive book on BCPL, both as an introduction and a reference is
"BCPL - the language and its compiler" by Martin Richards and Colin Whitby-
Strevens.

This book is essential reading for the BCPL programmer. It is published
by Cambridge University Press at a reasonable price in paperback. Martin
Richards originally designed BCPL in Cambridge in 1967. This book will
henceforth be referred to as "the BCPL book".

In particular the book contains an excellent section on "Advanced
facilities" which covers, among other things, pointers, bit operations, recursion
and scope rules.

For the purposes of this manual, the BCPL book is regarded as defining
"standard" BCPL, and many minor variations or enhancements to this standard
are pointed out.

3

4

2. USING ARNOR BCPL UNDER CP/M
CPC users may use BCPL under CP/M (either 2.2 or Plus). The supplied

disc has the CP/M version of the program on one side, and the AMSDOS version
on the other.

Note: PCW8256/8512 users should ignore the AMSDOS side of the disc and the
EPROM, as well as any references to Amsdos or the EPROM/ROM version,
throughout this manual. These are for CPC users only.

The newcomer to the language is advised to pass over chapters 2, 3 and
4 on the first reading as they describe the mechanics of using the compiler, rather
than details of the language.

List of files contained on the disc - CP/M side

The main files are:
BCPL.COM the main compiler program
CLIBHDR the main I/O library
CLIBHDR1 the extra I/O library containing less used routines
DEBUG a routine useful for debugging BCPL programs

The disc also contains the following example files:

BEDC.B BCPL editor source code, CP/M version
BEDC.COM BCPL editor object code, CP/M version
COPY.B a simple example program which copies a file
KEYDEFS.PCW a key definition file for use with BEDC.COM on the

PCW8256/8512.
TIDY.B A BCPL program to format BCPL source code tidily

Creating a working disc

NOTE:Under no circumstances should the original disc be used as a working disc
for normal use. The required files should copied onto a system disc and the
original retained in a safe place, as a backup.

A system disc should be created using DISCKIT(DISCKIT3,DISCKIT2 or
FORMAT, as appropriate on the CPC range) to format a disc. The first four files in
the above list should then be copied (using PIP) from the supplied BCPL disc onto
the newly formatted disc, together with (if using CP/M Plus) the EMS file from the
CP/M System Utilities.

This will create a disc suitable for use, but you might also decide to add
further files, such as an editor or SETKEYS.COM (see below), to the disc.

5

Entering and editing BCPL programs under CP/M

Any editor or word processor may be used for typing in BCPL programs,
as long as ASCII file can be produced.

The CP/M version of PROTEXT is specially suitable (using program
mode), as is the Arnor program editor supplied with other Arnor CP/M programs.
Alternatively CPC users can use the AMSDOS versions of PROTEXT and
MAXAM.

If you do not have a suitable editor the program BEDC.COM can be used,
and this should also be copied onto the system disc. This is a simple full screen
editor which is compatible with PROTEXT editing commands.

Note: If using BEDC.COM with a PCW8256/8512, the keys must be defined using
SETKEYS. Suitable definitions are provided in the file KEYDEFS.PCW and the
syntax used is: SETKEYS KEYDEFS.PCW

This can be incorporated into a PROFILE.SUB file, in which case, both
SETKEYS.COM and SUBMIT.COM must also be copied onto the working disc.

Compiling a BCPL program under CP/M

The CP/M version of the compiler takes a file containing BCPL source
code and produces a COM file containing an executable CP/M object code
program. There is no intermediate compilation stage. The command to compile a
program is:

bcpl <source><destination>

where <source> and <destination> are the names of the files which code is taken
and to which it is written. The destination filename is optional and if omitted will
default to the source file name with a .COM extension. The extensions on both
filenames are optional. If the source name has no extension then the compiler will
first search for a file with no extension and then for a file with a .B extension. The
same applies in the GET directive on both CP/M and AMSDOS versions. If the
destination file has no extension then this will default to .COM.

e.g. bcpl tidy

will first look for the file TIDY and if it is not present will then look for the file
TIDY.B. The compiler will read this file and then send the object code produced to
a file TIDY.COM.

6

Under CP/M Plus the compiler returns an error return code if an error occurred. It
can then be convenient to use SUBMIT to compile and run the program with a
single command. The CP/M conditional command facility can be used so the
program is only executed if no error occurred. For example a file COMPILE.SUB
may contain the following:

bcpl program.b
<y
:program

The second line causes the previous version to be deleted. Note that this
will only work under CP/M Plus (CPC6128 and PCW8256/8512) and not under
CP/M 2.2.

Including other files

Other BCPL source files may be included at any point in a program by
using the GET directive.

GET "file"

causes compilation to continue with the new file. at the end of the included file
compilation resumes at the point after the GET directive in the original file.

Most programs will start by including the library routines:

GET "CLIBHDR"
GET "CLIBHDR1" // often not needed
GET "DEBUG" // used when debugging (see section 8k)

Note that the GET directives to include the library routines must be in the
order shown because routines in CLIBHDR1 call other routines in CLIBHDR.

Compilation stops on the CP/M version when a full stop '.' is found in the
initial source file which was specified in the original command line, or when the
end of that file is reached.

7

3. USING ARNOR BCPL UNDER AMSDOS
NOTE: PCW8256/8512 users should ignore this chapter.

BCPL may be used from Amsdos on the CPC range, either in ROM form
or from a disc. If the ROM version is being used, the files BCPL.BAS and
BCPL.BIN are not required, though the library files will still be required.

NOTE: Under no circumstances should the original disc be used as a working
disc for normal use. The required files should be copied onto a system disc and
the original retained in a safe place, as a backup.

Creating a working disc

A new disc should be formatted and the first six files from the list below
should be copied onto it, using either FILECOPY or PIP from CP/M, depending on
the model being used, or the COPY command from the UTOPIA ROM if that is
installed. This will produce a disc containing all the essential files. ROM users can
omit the first two files called BCPL.BAS and BCPL.BIN.

Installing the ROM version

Fit the 16k EPROM into your ROM board following the instructions
supplied with the rom board. The ROM selection number is not critical, though it
must not clash with any existing ROMs, even if they are not installed on the ROM
board. (The disc rom for example uses ROM select 7).

Suitable boards may be purchased from Arnor if you do not already have
one.

The BCPL ROM provides an extremely convenient and fast environment
for developing BCPL programs, particularly when used in conjunction with
PROTEXT or MAXAM. Programs can be typed in using PROTEXT and MAXAM
and compiled directly from memory.

The ROM version may only be used on the CPC464, CPC664, and
CPC6128 computers.

List of files contained on the disc - AMSDOS side
The following files are most important:

BCPL.BAS the loader for the compiler program
BCPL.BIN the main compiler program
ALIBHDR the main I/O library
ALIBHDR1 the extra I/O library containing less used routines
AMSDOS a further I/O library containing graphics routines
DEBUG a routine useful for debugging BCPL programs

8

The disc also contains the following example files:

BED.B BCPL editor source code, AMSDOS version
BED.BIN BCPL editor object code, AMSDOS version
BED1.B a file containing directives to compile BED
DIS.B a Z80 disassembler written in BCPL
INVADE.B a space invaders game, written in BCPL

Load the AMSDOS disc version

To load the compiler type: RUN"BCPL"

Entering and editing BCPL programs under AMSDOS

Any editor or word processor may be used for typing in BCPL programs,
as long as an ASCII file can be produced.

PROTEXT (using program mode) and MAXAM are especially suitable, in
particular the ROM versions are recommended for convenience.

If you do not have a suitable editor the program BED.BIN can be used.
This is a simple full screen editor which is compatible with PROTEXT editing
commands.

Any source files created should preferably be saved to disc with a '.B'
suffix to the filename. This is not essential, but does help identify the type of files
on a disc.

Compiling a BCPL program under AMSDOS

Apart from having to load the disc version, the disc and ROM versions are
used in exactly the same way. There are, however, a few differences when
compared to the CP/M version. The major difference is that the CP/M version
allows the inclusion of source files within other source files. The AMSDOS version
does not allow this although it does allow the inclusion of stored PROTEXT
/MAXAM text. Due to this limitation the AMSDOS version has a simple front end
which allows you to type in source code which will then be submitted directly to
the compiler.

9

 To run the compiler type: |BCPL

The screen will clear and the BCPL signon message will be printed. You
will then be prompted with "Output file name?". The name you type here is the
name of the file into which the program will be compiled. It is also possible (unless
the program is too large) to compile directly into memory. To do this just press
RETURN (or ENTER) in response to the question.

You will then be presented with the BCPL prompt '->'. The compiler is now
ready to accept BCPL code for compilation. This will almost always consist of one
or more GET directives. There are two forms permitted:

(i) GET "file" to include another previously prepared file

(ii) GET to include the current text (PROTEXT/MAXAM)

Any number of GET directives may be typed. After each one the compiler
will perform the first part of the compilation. To end the compilation and produce
the object code type a full stop '.'.

Note: If the '.B' extension of a source filename is omitted from the filename in a
GET command when the filename contains it, Amsdos will initially produce the
message 'file not found' but will continue to search for a file with the .B extension
and compile it.

10

Testing BCPL programs under AMSDOS

If a program is compiled to memory, as described above, the command
'|GO' may be used to run the program.

Typing '|GO' will run the most recently compiled BCPL program. If no
program has been compiled, or an error occurred on compilation, then |GO will
simply print the message 'No program'.

WARNING - it is possible to corrupt a compiled program in memory by
editing the PROTEXT or MAXAM text, so after editing the program should always
be compiled again before using GO.

With large programs it is quite likely that there will be insufficient memory
to compile to memory. There are three courses of action that may be taken here:

(i) if you are using the disc version, buy a ROM board and use the
ROM version. You will gain an extra 16k of memory.

(ii) compile directly to disc.
(iii) use the CP/M version.

Extra facilities for ROM users

ROMON7

Some programs (particularly games) will not run with a rom installed. The
command |ROMON7 is provided to enable the BCPL rom (and any others) to be
turned off. All roms except the AMSDOS rom will be turned off. Note that
ROMON7 will reset the computer and lose the contents of memory.

RUN"DISC

When the BCPL ROM is installed, pressing CTRL-ENTER will generate
the command RUN"DISC. Thus a file 'DISC' will be run when CTRL-ENTER is
pressed.

11

4. COMPILER OPTIONS
The OPTION directive controls various compiler facilities. It does not

cause any code to be generated. There are 5 options on the AMSDOS versions
of the compiler and 3 on the CP/M version. Multiple options may be selected with
a single OPTION directive by separating the options with commas. The OPTION
directive may appear anywhere in a program so options can be selected for any
part of a program.

The three options common to all versions are as follows:

If the option is followed by a '+' sign the option will be switched on and if
followed by a '-', it will be switched off.

L - switch listing on or off

e.g. OPTION L+

S - switch stack checking on or off. If checking is on then the compiler will
check for stack overflow at the entry point of each procedure. If stack checking is
off then the stack may overflow and crash the machine.

e.g. OPTION S-

B - switch break checking on or off. If checking is on then the object code
produced will check whether the break key (ESC or STOP) has been pressed at
the start of loops and at the entry points of procedures. A number may be
specified to control how often the key is checked. The default is 10, which means
it is checked once for every ten loops or procedures.

e.g. OPTION B-
OPTION B+25

The defaults for the above options are listing off, stack checking on, break
checking on.

12

The remaining two options are only available on AMSDOS versions.

O - sets the code origin to the value of the number which follows it.
e.g. OPTION O #x172

will produce code which will run at address 172 (hex).

H - sets the highest byte usable by the compiled code. This is so that
programs compiled on one machine can be run on another.

e.g. OPTION H 40000

The origin defaults to the first unused byte of memory at compile time
(after any BASIC program or text) and the highest byte defaults to the last unused
byte of memory at compile time (usually HIMEM).

The main use for the H and O options is when producing stand alone
code to be run from a disc with no BASIC support etc. These options enable all of
the memory to be used for a program. It should be noted however that if the Z80
stack pointer goes below #x4000 or above #xC000 then the machine will probably
crash due to the ROM paging which uses these areas of memory.

13

5. SOME KEY FACTS ABOUT BCPL
(i) BCPL is a structured language

A BCPL program is made up of a number of named procedures, each of
which is quite separate. There is one special procedure, called 'start', which must
be present in every BCPL program. This is where execution will begin. This
procedure will call other procedures, which will in turn call other procedures, and
so on.

You will later come across terms such as blocks, compound commands
and scope - terms that apply to structured languages in general. Examples of
other structured programming languages are Pascal, Modula 2 and C.
Locomotive BASIC and Mallard BASIC are not structured languages.

(ii) BCPL is a compiled language

BASIC is usually an interpreted language. When a program is run, the
BASIC interpreter reads each line and executes the appropriate machine code
instructions. This decoding is done every time a line is executed. The result is that
BASIC programs run very slowly when compared with a machine code program
doing the same thing.

A BCPL program must be submitted to the compiler before it can be run.
The compiler translates the entire program into machine code instructions. The
machine code program is saved and can then be run. Since each BCPL line is
only translated once, a BCPL program runs a lot faster than a corresponding
BASIC program.

The disadvantage of using a compiled language is that you have to wait
for the program to be compiled each time before you can test it. This is not a
problem with Arnor BCPL since it compiles extremely quickly.

(iii) BCPL is a typeless language

Most languages have a number of internal variable types. BASIC usually
has 6 - integer, real, string, integer array, real array and string array. PASCAL and
C have rather more, and have the ability for the programmer to define his own
using "record" or "struct".

BCPL has just one internal variable type - a variable that can be assigned
a single word value. This is referred to as bit-pattern indicating that no inherent
meaning is attached to this value. The meaning of the value is determined by the
way that the programmer uses it, and this meaning can change. In Arnor's
implementation of BCPL each value is 16 bits long. There follow some examples
of how some of the common data types are used in BCPL. Note that in each case
a 'LET' declaration is required to define a variable before it can be used.

14

Simulating different variable types

Integer: LET number=?
number:=42

This assigns the value 42 (that is the bit pattern 0000000000101010) to the
variable 'number'.

Character: LET char=?
char:='A'

This assigns the number 65 (the ASCII code representing the letter 'A') to the
variable 'char'.

Vector: LET array=VEC 10
FOR i=0 TO 10 DO array!i:=i

This sets aside an 11 word (22 byte) area of memory, and assigns the address of
the start os this area to the variable 'array'. The vector is accessed by the
indirection operator '!', where 'array!i' means the contents of address (array+i).
!array means the same as array!0.

Two dimensional array:
MANIFEST $(m=3,n=4$)
LET array=VEC(m+1)*(n+1)-1
LET getarray(i,j)=array!(m*i+j)
LET putarray(i,j,value) BE array!(m*i+j):=value

Multi-dimensional arrays can be implemented by defining a vector and calculating
the required word from the array subscripts.

String: LET text="BCPL is a typeless language"
This stores the string "BCPL is a typeless language" somewhere in memory,
preceded by a byte containing the length of the string. The value assigned to the
variable 'text' is the address of this length byte. Note that this is only possible
because the memory address is the same length as the BCPL word (this is not a
coincidence!).

Note: There is a very important difference between the use of single and double
quotes, and confusing these can lead to bugs that are very difficult to find, so be
careful! The BCPL book contains a very useful section on the pitfalls of BCPL
programming.

Single quotes enclose a character and define a constant whose value is
the ASCII code of that character.

Double quotes enclose a string and define a constant whose value is the
address of that string.

15

6. TWO BCPL PROGRAMS
(i) A very simple BCPL program

This simply displays a message on the screen.

GET "CLIBHDR"
LET start() BE
$(

writes("Hello everyone!")
$)

Point to note:
1. Let and BE are BCPL keywords. BCPL keywords are printed in

uppercase throughout this manual for clarity. It is not necessary to type them in
uppercase as the compiler ignores the distinction.

2. start(). This is the procedure that must be present. The brackets
indicate that 'start' is the name of a procedure. They will often contain parameters
for the procedure.

3. $(and $). These are section brackets, marking the start and the
end of the procedure 'start'.

4. writes. This is a BCPL procedure (note the brackets containing
the parameter). It is not a BCPL keyword and so the procedure must be defined
somewhere (see below).

5. GET "CLIBHDR". This is a directive (an instruction to the
compiler) to compile the BCPL code contained in the file 'CLIBHDR'. This is a
library of useful procedures, including one called 'writes'.

(ii) A slightly more complex BCPL program

GET "clibhdr"

/* This is a copy routine */

LET start() BE

$(
LET inname=VEC20 ; LET inbuff=VEC 82
LET outname=VEC20 ; LET outbuff=VEC 82
LET c=0

16

writes("Input file name: ")
reads(inname)
writes("*nOutput file name:")
reads(outname)
TEST findinput(inname,inbuff) THEN
$(

selectinput(inbuff)
TEST findoutput(outname,outbuff) THEN
$(

selectoutput(outbuff)
$(

c:=rdch()
UNLESS c=endstreamch DO wrch(c)

$)
REPEATUNTIL c=endstreamch
endwrite()

$)
ELSE writes("Can't open output file")
endread()

$)
ELSE writes("Can't open input file")

$)
Points to note:

1. The use of /* and */ to enclose comments.

2. The use of LET to declare the variables 'inname', 'inbuff',
'outname', 'outbuff' and 'c'. All variables must be declared before
use, and the declarations must appear before any commands.

3. The use of VEC to define vectors as described above.

4. reads. Another library procedure, to read a string from the
keyboard into the vector given as parameter.

5. findoutput, findinput, readch, writech. Library procedures to open
files, and read and write characters.

6. TEST ... THEN ... ELSE. A conditional command. Section
brackets are used to enclose the block of commands that will be
executed if the test succeeds or fails.

7. REPEATUNTIL. The preceding block (enclosed in section
brackets) is repeated until the condition becomes true (in this
case when the ene of the file is reached).

17

7. SUMMARY OF THE BCPL LANGUAGE
The BCPL language is best considered in two parts. First the standard

language comprising the commands and syntax for expressions, constants etc.
Second the input/output library routines which are mostly procedures written in
BCPL. There are a fairly standard set of these, but this implementation includes
additional I/O routines.

Elements:

(i) Variable name. Must start with a letter and may also contain digits and full
stops. All characters significant.

(ii) Number. Can be decimal, octal(prefix with # or #O), hexadecimal (prefix
with #) or binary (prefix with #B).

(iii) String constant. Enclose in double quotes.
(iv) Character constant. Enclose in single quotes.

Certain characters are represented within a string or character constant in
a special way:

*" the " symbol
*' the ' symbol
** the * symbol
*B the backspace character
*C a carriage return (13)
*N the newline character (in fact two characters, 13 and 10)
*P the new page (form feed) character (12)
*S a space
*T the tab character
*Xnn a hexadecimal number between 0 and FF, e.g. *XF1

(v) Truth values, TRUE and FALSE. Pre-defined constants whose values are
the bit patterns representing true and false.

Operators:

Addressing operators
! indirection (subscript),e.g. !a, a!b
@ address of, the inverse of !, so @(!a) = a

Arithmetic operators
+ addition
- subtraction
* multiplication
/ integer division
REM integer remainder

18

Relational operators

= equal to (or EQ)
~= not equal to (or NE)
< less than (or LT)
> greater than (or GT)
<= less than or equal to (or LE)
>= greater than or equal to (or GE)

Logical operators

| or (or LOGOR)
& and (or LOGAND)
~ not (or NOT)
EQV bitwise equivalence
NEQV exclusive or

Shift operators

<< logical shift left,e.g. a << 4 shifts left 4 bits
>> logical shift right

Other components of expressions:

(i) Function call (see below)
(ii) Conditional expression,e.g. a->b,c

This means: evaluate a as a truth table. If true then the value of the
expression is b, otherwise c.

(iii) TABLE,e.g. TABLE a,b,c,d
This is an expression whose value is the address in memory at which the
table of values is stored. The values must be constants.

(iv) VALOF (see below)

Order of precedence of operators (highest first)

1. Bracketed expression 9. << >>
2. Function call 10. ~
3. ! as subscript 11. &
4. @, ! as indirection 12. |
5. % 13. EQV NEQV
6. * / REM ABS 14. -> (conditional expression)
7. + - 15. TABLE
8. = ~= < > <= => 16. VALOF

19

Note: PCW users will not find the | symbol shown on their keyboard. It is
obtained by pressing the EXTRA and the full stop key.

Section brackets and compound commands:

Many of the commands described below apply to a single command. For
example REPEAT will repeat a command until the required condition is
true. Section brackets are used to group several commands as a
'compound command', which is considered as a single command for
these purposes. The section brackets are $(and $). The commands to be
grouped should be enclosed between these symbols.

Commands:

Assignment

:= is used to assign a value to a variable. There are three basic forms of
the assignment statement:

variable := expression
variable!subscript := expression
!variable := expression

Conditional commands

IF <expression> THEN <command>
UNLESS <expression> do <command>
TEST <expression> THEN <command> ELSE <command>

Note that IF does not take an ELSE clause, TEST must be used.
The ELSE clause must be present in a TEST command.

REPEAT and WHILE

<command> REPEAT
<command> REPEATUNTIL <expression>
<command> REPEATWHILE <expression>
WHILE <expression> DO <command>
UNTIL <expression> DO <command>

20

FOR loop
FOR i = a TO b DO <command>
FOR i = a TO b BY c DO <command>

In the first case i takes values starting at a, incrementing by 1 until greater
than b.
In the second case i is incremented by c.c must be a constant expression.

SWTICHON
SWITCHON <expression> INTO <compound command>

The compound command consists of a sequence of commands with case
labels attached to commands. A case label takes the form 'CASE
<constant>:', and causes execution to start at the following instruction if
<expression> has the value <constant>. Execution will continue until an
ENDCASE command, or to the end of the SWITCHON compound
command. The label 'DEFAULT:' marks the place where execution is to
start if <expression> does not evaluate to any of the constants specified
by case labels. For an example of the use of SWITCHON see the 'writef'
routine in CLIBHDR or ALIBHDR.

Blocks and scope of identifiers

A BCPL program is made up of one or more blocks. A block consists of a
sequence of declarations (see below) followed by a sequence of
commands. To be precise a BCPL program is a single block, and any
block may contain nested sub-blocks.

The scope of an identifier (variable or procedure) defines those parts of a
program where that identifier can be used. Each identifier must be
declared with a declaration. The scope of that identifier is that same
declaration (thus allowing recursive definitions), and all subsequent
declarations and commands within that block. Thus if a routine is called
which is outside the block (and routines are usually separate blocks) then
variables defined within the original block may not be used.

There is an important restriction. Variables defined within a block may not
be used within a procedure defined within that block (even though they
are in scope). An attempt to do so will produce the error message
'dynamic free variable used'.

21

Declarations

The LET declaration
All variables and routines must be declared before they can be used.
There are several forms of declaration:

LET variable=<expression>

This defines a variable and gives it an initial value. If no initial value is
relevant '?' may be used in place of the expression.

LET array=VEC<constant>

This creates a vector with the variable 'array' containing the address of
the vector.

Procedures
LET proc(p1,p2,...)=<expression>
LET proc(p1,p2,...) BE <command>

These define a procedure with parameters p1, p2, The first form
provides a function, as a value is returned. The expression is often a
VALOF clause. This takes the following form:

VALOF <command>

The command is usually a compound command which contains one or
more RESULTIS commands:

RESULTIS <expression>

When a RESULTIS command is executed the VALOF command has
finished and the value of the expression is returned.

The second form of the procedure declaration defines a routine. No value
is returned.

Either form of procedure is invoked by a command:

proc(a,b,...)

A function call can appear in an expression.

22

Other declarations
GLOBAL $(var1:c1; var2:c2; ... $)
STATIC $(var1=val1; var2=val2; ... $)

Dynamic variables (those defined with LET) only have an allocated area
of memory when they are within scope. Variables defined with GLOBAL or
STATIC have a permanently allocated word of memory. The static
declaration allows an initial value to be set. The GLOBAL declaration is
redundant in this implementation as it is used when separate compilation
is available. It is included for compatibility with other BCPL compilers.

A global vector can be defined as follows. Declare the name of the vector
as a static variable, then declare a dummy vector in 'start' and assign this
to the static variable. This ensures the vector is in scope throughout the
program.

Example:
STATIC $(errlev=0 $)
LET start() BE
$(

LET errvec=VEC 3
errlev:=errvec
...

MANIFEST $(name1=val1; name2=val2; ... $)

The MANIFEST declaration attaches a name to a constant. It is not a
variable and should be usedby a program to be eeasily changed if
necessary.

Simultaneous declarations

A LET declaration may be followed by any number of AND declarations.
All these declarations are considered as a single declaration for the
purposes of scope of identifiers. This allows mutually recursive
procedures.

LET proc1(...) BE
$(
...proc2(...)...
$)
AND proc2(...) BE
$(
...proc1(...)...
$)

23

Strings
Strings are stored as follows:

One byte being the length of the string
The string, one character per byte

Since BCPL works with 16 bit words a special means is needed to access
the individual characters of a string. This is the infixed byte operator '%'.
To access the nth character of a string use : string%n. To access the
length of a string use : string%0
These can be read and written to, allowing strings to be manipulated in
any desired manner.
Strings can be split over more than one line, by putting one asterisk ('*') at
the end of a line, and another immediately before the continuation of the
string on the next line.

Transfer of control

FINISH
This causes execution of the program to stop.

RETURN
Control returns to the calling routine.

BREAK
Used within a repetitive command (UNTIL, WHILE, REPEAT,
REPEATUNTIL, REPEATWHILE, or FOR) it causes execution to resume
at the first command after the repetitive command.

LOOP
Control passes to the point where the repetitive command condition is
tested. For a FOR command control passes to the point where the control
variable is incremented.

ENDCASE
Control passes to the command after the end of the SWITCHON
compound command.

GOTO <expression>
Rarely required in BCPL, the GOTO command evaluates the expression
and jumps to the address obtained. The expression is usually a label
which is defined by being attached to a command,

e.g. labelname:<command>

24

Comments and layout of programs

There are two ways of putting comments within BCPL programs.

// causes the remainder of the line to be ignored
/* causes all text to be ignored until the compiler reaches the symbol */

Additionally a > in column 1 causes the whole line to be ignored.
Thus PROTEXT stored commands are ignored.

Multiple command lines are allowed. Commands must be separated by a
semicolon (;) if there would otherwise be an ambiguity.

Blank lines and spaces are ignored except where they are required to
separate items. PROTEXT soft spaces, soft line feeds, and markers are
ignored.

25

8. THE ARNOR BCPL LIBRARIES
The libraries supplied with the compiler provide procedures for writing to

the screen, printer or files and reading from the keyboard or files. Each of these
procedures is described below.

The two versions of the compiler need different libraries which, although
they look the same from the outside, have different internal workings determined
by the different operating systems. There is an additional AMSDOS library which
contains routines which are only relevant to the CPC machines.

Manifest constants defined in the libraries
These should be used where appropriate to make programs both

readable and portable. They define implementation dependent constants.

name value meaning and use

bitsperword 16 BCPL word size, for program portability
bytesperword 2 BCPL word size, for program portability
endstreamch -1 hard end of file character
maxint 32767 the largest possible integer
minint -32768 the smallest possible integer
newlinech 269 the new line character, *N, which is expanded to

carriage return followed by line feed
printstream 1 stream number to select output to printer
softeofch 26 soft end of file character
tickspersec 300 multiply the value returned by 'time' by this to get

the time in seconds. AMSDOS only.
vdustream 0 stream number to select screen/keyboard

Key to procedure descriptions:
Effect: brief explanation of the procedure
Returns: details any value returned by the procedure. All library procedures

may be called as routines,whether or not they return a value. Only
those procedures that return a value may be called as a function.
Note that several procedures return values in a supplied vector,
but these will be listed as 'nothing' since there is no function value
returned.

Location: this indicates where the procedure is defined. The location for the
CP/M version is given first, followed by the location for the
AMSDOS version. Most of the library procedures are written in
BCPL and are contained in one of the library files. A few routines
are pre-defined,i.e. they are written into the compiler.

26

(a) Output routines

NEWLINE()

Effect: Starts a new line in the currently selected output. The exact effect
in Arnor BCPL is to output a carriage return (13) followed by a line
feed (10).

Returns: Nothing

Location: CLIBHDR,ALIBHDR

NEWPAGE()

Effect: Starts a new page in the currently selected output. The exact
effect in Arnor BCPL is to output the form feed character (12).

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

WRCH(char)

Effect: The character is sent to the currently selected output stream.
Wrch('*N') has the same effect as newline(),i.e. carriage return
and line feed are output.

Returns: TRUE if successful, FALSE if an error occurred.

Location: CLIBHDR,ALIBHDR

Examples: wrch(char)
wrch('A')

WRITED(integer,width)

Effect: The integer is output as a signed decimal integer, right justified in
a field of the specified width. If this width is insufficient then it will
be output in the minimum width. The number output will be in the
range (-32768,32767).

Returns: Nothing

Location: CLIBHDR,ALIBHDR

27

WRITEF(format,a,b,c,d,e,f,g,h,i,j,k)

Effect: WRITEF allows characters to be printed out according to certain
formats. The procedure takes one string parameter which gives
the template to be used for printing. It also takes another set of
parameters (up to 11) which give the items to be printed. Note
that it is not necessary to provide a BCPL procedure with all of its
formal parameters. The template parameter is a string which may
include the % character followed by a conversion character(s).
The template string is printed out with the other parameters
inserted into it in place of the % character. The conversion
characters available are listed below. Some of these must be
followed by a number to specify the required field width. These
are marked with 'n', which can be a decimal or hex digit (so 'F'
gives the maximum width of 15).

S - print a string
C - print a character
Xn - print a hex value. If the field width is too small, only the

 least significant digits will be output.
On - print a hex value. If the field width is too small, only the

 least significant digits will be output.
In - print an integer in decimal. If the field width is too small,

 the integer will be output using the least number of
 spaces.

N - print an integer in decimal with no leading spaces
% - print the % character
$ - skip a parameter

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Example: LET convert=100
writef("%N in hexadecimal is %X4*N",convert,convert)

would print

100 in hexadecimal is 0064

28

WRITEHEX(integer,width)

Effect: The integer is output as an unsigned hexadecimal integer, right
justified in a field of the specified width, with leading zeros. If this
width is insufficient then the least significant digits are output.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Example: writehex(number,4)

WRITEN(integer)

Effect: The integer is output in decimal in the minimum width. This is the
same as WRITED(integer,0).

Returns: Nothing

Location: CLIBHDR,ALIBHDR

WRITEOCT(integer,width)

Effect: The integer is output as an unsigned octal integer, right justified
in a field of the specified width, with leading zeros. If this width is
insufficient then the least significant digits are output.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Example: writeoct(number,6)

WRITES(string)

Effect: The string is output.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Example: writes("Enter filename:")

29

WRITET(string,width)

Effect: The string is output in the specified field width. If the width is
longer than the string then spaces are output at the right. If the
width is shorter than the string, the whole string is printed.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

WRITEU(unsigned,width)

Effect: The first parameter is treated as an unsigned integer and output
in decimal, right justified in the specified width. If the width is too
small the number is printed in the minimum width. The number
output will be in the range (0,65535).

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

30

(b) Input routines

RDCH()

Effect: Reads a character from the current input stream.

Returns: The character read.

Location: CLIBHDR,ALIBHDR

READN()

Effect: Reads a decimal integer from the current input stream.
Leading spaces are ignored.

Returns: The number read.

Location: CLIBHDR,ALIBHDR

READS(string)

Effect: A string is read from the current input stream. The parameter is a
vector in which the string will be stored. The string must be
terminated by a carriage return. The DEL, or ←DEL key may be
used to delete backwards. If ESC or STOP is pressed when the
cursor is not at the start of the string, all characters are deleted. If
ESC or STOP is pressed when the cursor is at the start of the
string, a string of zero length is returned. The string is limited to a
length of 255 bytes, so the vector string should be 128 words in
length.

Returns: FALSE if ESC or STOP pressed, otherwise TRUE

Location: CLIBHDR,ALIBHDR

Example: LET input=VEC 128
UNLESS reads(input) DO error("Escape")

31

STRTONUM(string,base)

Effect: This function takes a string as it first parameter and the base of
the result as its second. It converts the string to a number in that
base and returns it as the result.

Returns: The number obtained by the conversion.

Location: CLIBHDR,ALIBHDR

Example: A READX function to input a hexadecimal number is easily
written:

LET readx()=VALOF

$(
LET string=VEC 128
reads(string)
RESULTIS strtonum(string,16)

$)

UNRDCH()

Effect: Puts back the last character read from the currently selected
stream. This routine should not be called twice without an
intervening call to RDCH, the second call will have no effect.
Characters can only be returned to the current stream if RDCH is
used, the facility is not provided at the primitive I/O routine level
(that is RDVDU and READCH).

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Example: ch:=rdch() REPEATUNTIL ch=13
unrdch()

32

(c) Stream Selection Routines

INPUT()

Effect: This will return a value representing the current input stream.
Zero means the keyboard is the current input stream, any other
value is the address of the buffer associated with the file from
which input is being taken.

Returns: The current input stream

Location: CLIBHDR,ALIBHDR

OUTPUT()

Effect: This will return a value representing the current output stream.
Zero means the VDU is the current stream, one means the printer
is the current stream, any other value is the address of the buffer
associated with the file to which output is being sent.

Returns: The current output stream

Location: CLIBHDR,ALIBHDR

SELECTINPUT(stream)

Effect: This is used to change the currently selected input stream (i.e.
that used by rdch). A stream value of zero selects the keyboard.
Any other value must be the address of the buffer associated with
a file, and causes input to be taken from that file. The file must
previously have been opened using FINDINPUT.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

33

SELECTOUTPUT(stream)

Effect: This is used to change the currently selected output stream (i.e.
that used by wrch, writef etc.). A stream value of zero selects the
VDU, a value of one selects the printer. Any other value must be
the address of the buffer associated with a file, and causes output
to be sent to that file. The file must have been previously opened
using FINDOUTPUT.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

Examples: selectoutput(outfilebuf)
selectoutput(printstream)

(d) File I/O Routines

ENDREAD()

Effect: The currently selected input stream is closed.

Returns: TRUE if the file was closed successfully, FALSE if not.

Location: CLIBHDR,ALIBHDR

ENDWRITE()

Effect: The currently selected output stream is closed. It is essential that
either this routine or CLOSEOUT is used after writing to a file, as
it causes the last section of data to be written to the disc.

Returns: TRUE if the file was closed successfully, else FALSE.

Location: CLIBHDR,ALIBHDR

34

FINDINPUT(filename,buffer)

Effect: To open an input file. The first parameter is a string giving the
name of the file. The second parameter is a vector which will be
used for the file buffer. This vector should be 82 words long under
CP/M and 1024 words long under AMSDOS. The filename must
be a valid CP/M or AMSDOS filename, and may include a drive
specifier.

Returns: If the file was opened successfully, the value 'TRUE' is returned,
otherwise 'FALSE'.

Location: CLIBHDR,ALIBHDR

Example: LET inbuf=VEC 82
TEST findinput("A:names.dta",inbuf)
THEN selectinput(inbuf)
ELSE error("Cannot open file")

FINDOUTPUT(filename,buffer)

Effect: To open an output file. The first parameter is a string giving the
name of the file. The second parameter is a vector which will be
used for the file buffer. This vector should be 82 words long under
CP/M and 1024 words long under AMSDOS. The filename must
be a valid CP/M or AMSDOS filename, and may include a drive
specifier.

Returns: If the file was opened successfully, the value 'TRUE' is returned,
otherwise 'FALSE'.

Location: CLIBHDR,ALIBHDR

Example: LET outbuf=VEC 82
TEST findoutput("A:names.dta",outbuf)
THEN selectoutput(outbuf)
ELSE error("Cannot open file")

35

REWIND()

Effect: The current input stream is rewound. If the current stream is the
keyboard this has no effect, if a file the file pointer is set to the
start of the file, so the next input will be taken from the start.
REWIND is not provided in the AMSDOS version.

Returns: Nothing

Location: CLIBHDR

Example of the use of file I/O routines:

LET buffer=VEC 1024
LET filename=VEC 20
writef("Please enter the message file name:")
reads(filename)
TEST findinput(filename,buffer) THEN
$(

LET char=?
selectinput(buffer)
char:=rdch()
UNTIL char=softeofch LOGOR char=endstreamch DO

$(wrch(char); char:=rdch() $)
endread(buffer)
selectinput(vdustream)

$)
ELSE writef("No messages*N")

This will ask for a file name and then, if that file exists, will print out the contents of
it.

36

(e) The Primitive I/O Operations

The library contains primitive routines for reading/writing to files, reading/writing to
the VDU, and writing to the printer. The higher level RDCH and WRCH routines
switch between these routines when called upon to do so by SELECTINPUT or
SELECTOUTPUT. It is quite possible to use the primitive routines separately from
RDCH/WRCH and so read/write files and the screen/keyboard at the same time
without using SELECTINPUT or SELECTOUTPUT. These routines are RDVDU,
WRVDU, READCH and WRITECH.

CLOSEIN(buffer)

Effect: The input file associated with the buffer is closed.

Returns: TRUE if the file was closed successfully, FALSE if not.

Location: CLIBHDR,ALIBHDR

CLOSEOUT(buffer)

Effect: The output file associated with the buffer is closed. It is essential
that either this routine or ENDWRITE is used after writing to a file,
as it causes the last section of data to be written to the disc.

Returns: TRUE if the file was closed successfully, FALSE if not.

Location: CLIBHDR,ALIBHDR

FLUSH()

Effect: Empties the keyboard buffer.

Returns: Nothing

Location: CLIBHDR,ALIBHDR

37

PRBUSY()

Effect: Finds out if the printer is busy.

Returns: TRUE if busy, FALSE if not

Location: CLIBHDR,ALIBHDR

Example: IF prbusy() THEN writes("Put the printer on line*N")
WHILE prbusy() LOOP

PRCH(char)

Effect: Sends a character to the printer. If the printer is busy then PRCH
waits until the character can be sent. PRBUSY should be used to
test for the printer being busy. This routine is called by WRCH if
the printer is the selected output stream.

Returns: TRUE

Location: CLIBHDR,ALIBHDR

RDTEST()

Effect: Finds out if a key has been pressed.

Returns: TRUE if a key has been pressed, FALSE if not.

Location: CLIBHDR,ALIBHDR

Example: WHILE rdtest() DO RDCH()

RDVDU()

Effect: Reads a character from the keyboard, whatever the currently
selected input stream. This routine is called by RDCH if the
keyboard is the selected input stream. RDVDU is pre-defined in
the CP/M compiler so that it can buffer characters to allow for
break testing without losing characters.

Returns: The character read.

Location: Pre-defined in CP/M compiler,ALIBHDR

38

READCH(buffer)

Effect: Reads a character from a file, whatever the currently selected
input stream. The buffer is not needed under AMSDOS. This
routine is called by RDCH if a file is the selected input stream.

Returns: The character read.

Location: CLIBHDR,ALIBHDR

REWINDIN(buffer)

Effect: The file pointer for the specified file is set to the start of the file.
This routine is called by REWIND if a file is the selected input
stream. REWINDIN is not provided in the AMSDOS version.

Returns: Nothing

Location: CLIBHDR

WRITECH(char,buffer)

Effect: Writes a character to a file, whatever the currently selected output
stream. The buffer is not needed under AMSDOS. This routine is
called by WRCH if a file is the selected output stream.

Returns: TRUE if successful, FALSE if a disc error occurred

Location: CLIBHDR,ALIBHDR

Examples: writech('$',outfilebuf) // CP/M version
writech('$') // AMSDOS version

WRVDU(char)

Effect: Writes a character to the screen, whatever the currently selected
output stream. This routine is called by WRCH if the screen is the
selected output stream.

Returns: TRUE

Location: CLIBHDR,ALIBHDR

39

(f) Miscellaneous Routines

APTOVEC(function,arraysize)

Effect: This will create a dynamic array of size arraysize and then pass
the address of this array along with its size to the function. It will
return the result of the function and is equivalent to:

LET aptovec(function,arraysize)=VALOF

$(LET v=VEC arraysize // illegal in BCPL
RESULTIS function(v,arraysize)

$)

Returns: the value returned by the function

Location: Pre-defined,pre-defined

BYTEMOVE(start,dest,size)

Effect: This is a block byte move routine. It works with actual byte
addresses (that is the addresses used by the Z80 processor) so if
array names are used as parameter then they should be
multiplied by two as BCPL works with work addresses. The old
and new blocks may overlap.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

Example: bytemove(buffer*2+36,buffer*2+16,16)

CALL(address,@af,@bc,@de,@hl,@ix)

Effect: Calls a machine code routine at a byte address. All parameters
MUST be supplied as values are returned. The values returned by
the machine code routine are passed back in the variables.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

40

CAPITALCH(char)

Effect: If the character is a lower case letter the upper case equivalent is
returned, otherwise the original character is returned.

Returns: The converted character

Location: CLIBHDR,ALIBHDR

COMPCH(char1,char2)

Effect: Compares two characters, ignoring the distinction between upper
and lower case. It returns the difference between the two
characters.

Returns: The difference between the characters

Location: CLIBHDR1,ALIBHDR1

COMPSTRING(string1,string2)

Effect: Compares two strings, ignoring the distinction between upper and
lower case. The result is zero if strings are the same, positive if
string1 follows string2 alphabetically, and negative if string2
follows string1.

Returns: The result of the comparison, as above

Location: CLIBHDR1,ALIBHDR1

DECVAL(digit)

Effect: This returns the decimal value of a hexadecimal digit.

Returns: The decimal value of the digit

Location: CLIBHDR,ALIBHDR

Example: decval('A') // returns 10

41

DELETE(filename,buffer)

Effect: The first parameter is a string specifying the name of a file. This
file is then deleted from the disc. The CP/M version requires an
82 word buffer, the AMSDOS version requires no buffer.

Returns: TRUE if the operation succeeded, FALSE if a disc error occurred.

Location: CLIBHDR1,ALIBHDR1

Examples: delete("tempfile",buffer) // CP/M version
delete("tempfile") // AMSDOS version

LEVEL(array)

Effect: This returns the state of the BCPL program in the array given.
The array must be at least 4 words in size. This routine is used
with LONGJUMP to allow jumps between procedures etc.
See section 9 for more details.

Returns: Nothing

Location: Pre-defined,pre-defined

LONGJUMP(address,array)

Effect: This will set the state of the program according to the array given.
The array must have been set previously by the use of LEVEL.
Once the state has been set it will jump to address.
See section 9 for more details.

Returns: Nothing

Location: Pre-defined,pre-defined

42

RANDOM()

Effect: This function returns a sequence of pseudo-random numbers.
The sequence will always be the same unless the seed is
initialised first. The seed is stored in a static variable called
'randomseed', and this should be initialised to different values to
produce different sequences. The sequence runs through all
possible 2 byte values.

Returns: A randomly generated integer.

Location: CLIBHDR1,ALIBHDR1

RENAME(filename1,filename2,buffer)

Effect: The first parameter is a string specifying the name of a file. The
file is renamed to the second name. The CP/M version requires
an 82 word buffer, the AMSDOS version requires no buffer.

Returns: TRUE if the operation succeeded, FALSE if a disc error occurred.

Location: CLIBHDR1,ALIBHDR1

Examples: rename("oldname","newname",buffer) // CP/M version
rename("oldname","newname") // AMSDOS version

STOP(returncode)

Effect: Execution of the program terminates. Under CP/M Plus the
supplied parameter is used to set the program return code. By
convention a return code between #xFF00 and #xFFFE is an
error code. The return code is ignored under CP/M 2.2 and
AMSDOS.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

43

UPPERCASE(char)

Effect: This is the same as CAPITALCH.

Returns: The converted character

Location: CLIBHDR,ALIBHDR

VERSION()

Effect: Returns a number identifying the operating system ans computer
on which the program is being executed.
The values returned are:

1 = CPC,AMSDOS
2 = CPC,CP/M 2.2
3 = CPC,CP/M Plus
4 = PCW,CP/M Plus

Returns: The version number

Location: CLIBHDR1,ALIBHDR1

44

(g) Routines provided in the CP/M libraries only

BDOSA(@c,@de)

Effect: The BDOS is called with the parameters passed in the C and DE
registers. The addresses of the variables must be passed in order
that results can be returned. The returned values of the A and HL
registers from the BDOS are returned in the variables c and de
respectively.

Returns: Nothing

Location: CLIBHDR only

BDOSB(c,de)

Effect: This is similar to BDOSA except that results are not returned. The
values of c and de are passed, not their addresses.

Returns: Nothing

Location: CLIBHDR only

BIOS(n,@a)

Effect: BIOS routine n is called and the value returned by the BIOS in A
is returned in the variable a. The address of a must be passed.
this routine is used by PRBUSY.

Returns: Nothing

Location: CLIBHDR only

FIRMWARE(address,@af,@bc,@de,@hl,@ix)

Effect: On CP/M Plus, calls the firmware ROM (CPC6128 only) or the
extended firmware jumpblock. The values returned by the
firmware routine are passed back in the variables. All parameters
MUST be supplied.

Returns: Nothing

Location: CLIBHDR1 only

45

TAIL(string)

Effect: Takes a vector as parameter and stores the CP/M command tail
(from #x80) in the vector as string. This allows BCPL programs to
access parameters typed on the CP/M command line. The vector
should be 64 words long.

Returns: Nothing

Location: CLIBHDR1 only

(h) Routines provided in the AMSDOS libraries only

EXTERNAL(command,nparms,parmblock)

Effect: This allows a BCPL program to access an AMSDOS external
command. It is used by DELETE and RENAME. The parameters
are passed in the form required by the firmware for calling an
external command. See the DELETE and RENAME routines in
ALIBHDR1 for details of how to use this routine.

Returns: Nothing

Location: ALIBHDR1 only

TIME()

Effect: Returns the time in units of 1/300 second, as maintained by the
AMSDOS firmware.

Returns: The time

Location: ALIBHDR1 only

46

(i) Routines provided only for compatibility

These are routines that may be used in existing BCPL programs, but the
infixed byte operator now makes their use unnecessary.

GETBYTE(string,pos)

Effect: Gets a character from a string. This routine is included for
compatibility with older BCPL systems and would usually be
replaced by: string%pos

Returns: The character from the string

Location: CLIBHDR1,ALIBHDR1

PACKSTRING(vector,string)

Effect: Packs a vector containing one character per word into a string
containing two characters per word. This routine is included for
compatibility with older BCPL systems.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

PUTBYTE(string,pos,char)

Effect: Puts a character into a string. This routine is included for
compatibility with older BCPL systems, and would usually be
replaced by: string%pos:=char

Returns: Nothing

Location: CLIBHDR1,ALIBHDR

UNPACKSTRING(string,vector)

Effect: Unpacks a string containing two characters per word into a vector
containing one character per word. This routine is included for
compatibility with older BCPL systems.

Returns: Nothing

Location: CLIBHDR1,ALIBHDR1

47

(j) AMSDOS Graphics and other routines

These routines are included in the file "AMSDOS" and are relevant only to
CPC machines. They provide the means for a BCPL program to access the
computer's graphics and other firmware facilities, and in most cases correspond
directly to a Locomotive BASIC command. For details of how to use these
routines consult the file AMSDOS, which lists the equivalent BASIC routines.

List of routines:

border, clg, cls, cursdi, cursen, cursoff, curson, draw, drawr, ent, env, frame, gpen,
gpaper, gtest, gtestr, gwindow, gwrch, ink, inkey, inkmode, keyvalid, locate, mode,
move, mover, opaque, origin, paper, pen, plot, plotr, release,rsx, sound, speedink,
speedkey, stream, strswap, tag, tagoff, transparent, window, xpos, ypos

(k) DEBUG

There is one further library routine provided, which is useful when
debugging programs. The routine, DEBUG, is supplied in a separate file, also
called 'DEBUG', and provides various options for displaying variable names and
contents. These options may be changed with later releases of BCPL and so to
ensure accuracy, exact details are only given in the file.

To use DEBUG, put the directive 'GET "DEBUG"' near the start of the
program - so it is compiled after the library routines and before the first time
DEBUG is called.

It is possible to compile the program without DEBUG being called, but
without the need to remove the calls themselves. Simply replace 'GET "DEBUG"'
by 'LET debug() BE RETURN'. This will substitute a dummy routine.

48

9. DIFFERENCES FROM STANDARD BCPL
The INLINE command

This is an extension to the normal BCPL command set and allows Z80
code to be incorporated directly into a BCPL program. The inline command is
followed by a list of constants separated by commas. The low byte of these
constants is taken and inserted directly into the object code. This allows
procedures to call firmware routines etc. and has been used in the LIBHDR files.
In order to use this facility properly you must be aware of the way the compiler
stores variables and registers which must be left intact. See appendix 1 (technical
information).

e.g. INLINE 205,#x5A,#xBB

will call the AMSDOS print character routine - TXT OUTPUT.

The infixed operator %

This is an extension to standard BCPL which is supported. The infixed
byte operator will extract a particular byte from a vector. In use this operator is
very similar to the ! operator except that it cannot be used as a unary operator
and that the second operand always gives the byte offset from the first operator.
The main use of this operator is with strings to extract a particular character from
the string.

e.g.
LET v=VEC 19
FOR a=1 to 39 DO v%a:=' '
v%0:=39 // set the string length byte

will create a string containing 39 spaces.

Undefined initial values

The initial value of a simple variable declared in a LET command may be
undefined. This is done by using a question mark (?). This is used to aid
readability of programs by indicating that there is no relevant initial value of a
variable.

FINDINPUT and FINDOUTPUT

The procedures for opening files are slightly different from standard BCPL
in that a buffer must be specified as a parameter, instead of them returning a
stream identifier.

49

Global Variables

When a procedure is defined in standard BCPL the compiler checks to
see if a GLOBAL variable with the same name is in scope. If it is in scope, then
that variable will be initialised with the address of the procedure. If there is no
such variable in scope then a new STATIC variable will be created and that
variable initialised with the address of the procedure. When a procedure call is
made the code looks up the address in the relevant variable and calls the
address. The reason for this indirect calling is to enable easy communication
between separately compiled units.

As the ARNOR compiler does not allow separate compilation there is no
need for this indirect approach and so a call is made directly to the address of the
procedure. This also means that the number associated with a GLOBAL variable
in its definition is meaningless as there is no actual GLOBAL vector. The index
number is, however, retained for compatibility with other compilers. The outcome
of all this is that although it is possible to read the address of a procedure, and so
pass procedures as parameters, it is not possible to assign to a procedure. You
can however, set up a global variable with a different name from a procedure and
then assign the procedure's address to that global variable in your program. This
means that the procedure can then be assigned to.

LEVEL and LONGJUMP

Level works in a slightly different way from most BCPL implementations.
It usually returns a single 1 word value representing the state of the BCPL stack
at a point in the program. Due to the limitations of the Z80 in stack addressing it is
not possible to pack the required information into one word with this
implementation of BCPL. Instead the LEVEL procedure returns its result in a 4
word vector passed to the procedure. See appendix 1 (technical information) for
exact details.

e.g.
LET errorlevel=VEC 3
level(errorlevel)

Extensions not supported

The following features, which are mentioned in the BCPL book, are not
supported: separate compilation, floating point extension, the field selector
extension.

50

A1. TECHNICAL INFORMATION

The compiler allocates dynamic storage from the hardware stack for
ordinary local variables. These are accessed by indexing the stack using the IX
register which points to the high byte of the last formal parameter minus 127.
The formal parameters are stored in reverse order, coming down in memory.
Immediately below the first formal parameter is the return address from the
procedure which called the currently active procedure. Below is the old IX register
from the calling procedure and below this a value which represents the state of
the vector space. Local variables now come down from this space in the order
that they are declared ans DP will point to the low byte of the last local variable
currently in scope.

When a new local variable is declared, its initial value is calculated and
then pushed onto the stack. When a vector is allocated, space is taken from the
vector space, which is directly after the program, and a pointer to this space is
pushed onto the stack.

e.g. for the following procedure

LET x(a,b) BE
$(

LET z=0
...

$)

at the point marked by the dots, the stack looks like this

b IX + 127
a IX + 125
ret addr IX + 123
old IX IX + 121
vec ptr IX + 119
z IX + 117, SP points here

When local variables are undeclared (i.e. at the end of their block), the
stack pointer is moved up to release the space used.

51

Static variables are allocated their space at compile time. They are
embedded in the code and re-initialised each time the program is run. The stack
is placed at the top of the available memory. For CP/M versions this is calculated
from the start of the BDOS.

In AMSDOS versions, static variable space is determined at compile time,
possibly using the H option. As already mentioned vector space is taken from the
area of memory directly after the program. The start of a program is #x100 for
CP/M versions and defaults to the first usable byte of memory for AMSDOS. This
may be changed by use of the O option.

This leaves a memory map looking like:

< SP

< program start

< 0

When writing any inline code the user must ensure that the IX register
and the SP are stored to their former positions when the code finishes. Failure to
do this will almost certainly cause the program to crash. The Amstrad also
requires that the alternate register set is not used.

The LEVEL library procedure stores information about the state of
computation in a 4 word vector. The 4 values which are stored are as follows

word 0 - The old vector base pointer
word 1 - The vector top pointer
word 2 - IX
word 3 - SP

When LONGJUMP is used this information is used to restore the state of
computation.

52

Hardware stack

empty

Vectors

Program and
static variables

runtime routines

The 14th and 15th bytes of any object code produced always point to the
base of the current vector allocation. The 16th and 17th bytes always point to the
top of the current vector allocation. All of the vector space required for any
particular procedure activation is allocated on entry to that procedure and
deallocated on exit. When a vector is declared within a procedure it is given a
chunk of memory within this allocation.

The compiler is a two pass compiler. The first pass reads the source text
of the program, does syntax analysis of it and produces an applicative expression
tree which represents the program. The second pass goes over this tree and
produces code for it. The second pass is in fact done twice; the first time no code
is produced but the program is checked for any semantic errors such as
undefined identifiers or illegal assignments. If this pass runs smoothly with no
errors being picked up then the second pass will be repeated, this time generating
code.

53

A2. SUMMARY AND INDEX OF LIBRARY ROUTINES
The letter at the start of each line in the following list of library routines

indicates the degree of portability of the routines. Full details are given in
Appendix 3.

Note: A means AMSDOS version only, C means CP/M version only

S indicates routine is part of the standard BCPL I/O library
D indicates a standard BCPL routine but with a slight difference in the way
 it is used.
F indicates frequently found similar routines in BCPL systems
All unmarked routines are Arnor BCPL specific.

name pg description

S aptovec 40 call a routine with a dynamically allocated vector
C bdosa 45 call the BDOS, returning values
C bdosb 45 call the BDOS, not returning values
C bios 45 call the BIOS, returning a value

bytemove 40 move a block of memory using byte addresses
F call 40 call a machine code routine
F capitalch 41 convert character from lower to upper case

closein 37 close an input file
closeout 37 close an output file

F compch 41 compare two characters
F compstring 41 compare two strings

debug 48 debugging aid
decval 41 convert a hexadecimal digit to decimal

F delete 42 delete a file
S endread 34 close the current input stream
S endwrite 34 close the current output stream

A external 46 call an external command
D findinput 35 open an input file
D findoutput 36 open an output file

C firmware 45 call the firmware (CP/M Plus only)
flush 37 flush the keyboard buffer

S getbyte 47 get a byte from a string
S input 33 return the currently selected input stream
D level 42 get pointer to current environment
D longjump 42 jump to outer level of a program
S newline 27 start a new line in the output
S newpage 27 start a new page in the output
S output 33 return the currently selected output stream

54

S packstring 47 compact a string
prbusy 38 see if the printer is busy
prch 38 send a character to the printer

S putbyte 47 put a byte into a string
F random 42 return a pseudo-random number
S rdch 31 read a character

rdtest 38 see if a key has been pressed
rdvdu 38 read character from keyboard
readch 39 read a character from the input line

S readn 31 read a decimal number
S reads 31 read a string

C readsector - read a 128 byte sector from disc
F rename 42 rename a file

C S rewind 36 rewind the input stream
C rewindin 39 rewind an input file

S selectinput 33 change the input stream
S selectoutput 34 change the output stream

C setfcb - set up a file control block
S stop 43 stop a program and set return code

strtonum 32 convert a string to a decimal number
C tail 46 returns the CP/M command tail as a string
A F time 46 return the time

S unpackstring 47 expand a string into a vector
S unrdch 32 put back the last read character
F uppercase 44 same as capitalch

version 44 return the operating system and computer
S wrch 27 write a character

writech 39 write a character to the output file
S writed 27 write a decimal number
S writef 28 formatted write
S writehex 29 write a hexadecimal number
S writen 29 write a decimal number in minimum width
S writeoct 29 write an octal number
S writes 29 write a string

C writesector - write a 128 byte sector to disc
F writet 30 write a string and pad with spaces
F writeu 30 write an unsigned decimal number

wrvdu 39 write character to the screen

55

A3. PORTABILITY
Most of the above I/O routines will be found in virtually all versions of

BCPL. Some are less standard, and some are specific to Arnor BCPL. If a
program may be required to run under other versions of BCPL these less
standard routines should be used as little as possible.

Routines that are part of the standard BCPL I/O library (those marked 'd' are used
in a slightly different way in Arnor BCPL):

aptovec, endread, endwrite, findinput(d), findoutput(d), getbyte, input, level(d),
longjump(d), newline, newpage, output, packstring, putbyte, rdch, readn, reads,
rewind, selectinput, selectoutput, stop, unpackstring, unrdch, wrch, writed, writef,
writehex, writen, writeoct, writes.

Routines that are not entirely standard (though many BCPL systems have
something similar):

call, capitalch, compch, compstring, delete, random, rename, time, uppercase,
writet, writeu.

Routines specific to Arnor BCPL:

bdosa, bdosb, bios, bytemove, closein, closeout, debug, decval, external,
firmware, flush, prbusy, prch, rdtest, rdvdu, readch, readsector, rewindin, setfcb,
strtonum, tail, version, writech, writesector, wrvdu, plus all the routines in the file
"AMSDOS", which are also CPC machine specific as well.

56

A4. ERROR MESSAGES
There are three main sets of error messages which can occur. These are

fatal errors which cause the compiler to abort immediately, phase 1 errors which
will stop compilation after phase 1 and finally phase 2 errors which will stop
compilation at the end of the first run of phase 2.

Most error messages give a line number, for example "Expecting
command near line 27". The word "near" is used because the compiler gives the
line number at which it discovered the problem, and this is not necessarily the
same line that needs correcting. The line number refers to the position of the line
within the file, and not to the total number of lines compiled so far.

(i) Fatal errors

Out of memory

The compiler has run out of room for the program or its symbol table. Can
sometimes be solved by re-using local variable names.

Out of symbol space

Very similar to the above except that the program may not be too big. Try
compiling it to disc which allows twice as much symbol space.

If you are compiling a piece of text in memory from PROTEXT or MAXAM
then saving the text to disc, clearing the memory and then re-compiling may solve
this problem.

I/O error

An error has occurred when writing to the output file. May mean that the
disc is full.

Can't open input file

The filename given in a GET directive could not be found on the disc.

Can't open output file

The compiler was trying to open a file to output the compiled code to, but
for some reason was not able to open it.

57

Broken in

ESC or STOP was pressed twice in a row. Pressing it once will halt the
compiler and cause it to wait for another key press. Pressing escape again
causes this error while any other key causes compilation to continue.

Undefined START

All programs must have a procedure called START. The program
submitted did not have this procedure.

Bad GET

Due to the limitations of AMSDOS only one file can be opened for input at
any one time. A file was opened which contained a GET directive. Will also occur
if a piece of stored PROTEXT/MAXAM text attempts to GET itself.

Non-ASCII file

The compiler was instructed to open a file but that file did not contain
ASCII text which is required for the compiler. Users of CPC versions of PROTEXT
should use program mode, which will save the file in ASCII format.

File intact

This occurs on CP/M versions when the destination file existed but the
user typed N when asked if the file should be deleted.

Bad SOURCE name

CP/M versions check the source name given, and if it is invalid in some
way e.g. has an extension of more than 3 letters then this error will be given.

Bad DESTINATION name

As above.

58

(ii) Syntax errors

Phase 1 errors are all syntax errors within the program. Often the cause
will be a missing $) or) which will probably cause what may at first seem to be an
odd error message. Syntax errors are reported as occurring near a certain line.
This is the line within a particular file. If the compiler listing is switched off when
the error occurs then a buffer, holding the last few lines of text read from the
source code, will be displayed.

Bad expression

The expression being examined was faulty in some way. Maybe a
command name was used as an identifier.

Bad vector definition

A vector definition was bad in some way. In particular only one vector may
be declared in any LET command (although simultaneous definitions are
allowed).

Bad procedure definition

A procedure definition was badly made. May have been some other form
of definition which went wrong.

Bad FOR loop

 The FOR loop was badly formed in some way.

need : or = in constant definition

Constant, Global and Static definitions require both : and = between the
identifier and the constant expression. One or another is missing.

Missing $)

A $) was expected but not found. Check the number of opening and
closing section brackets in the program.

59

Missing $(

A compound statement was needed but the opening $(was not found. In
particular all SWITCHON statements must be compound.

Missing)

A closing bracket in an expression or procedure call/definition was
missing.

Section tag mismatch

A section bracket was tagged but the tag did not have a matching opening
section bracket. May be caused by omitting the space after a section bracket.

Expecting command

A command was expected but one was not found. This can be caused by,
for example, omitting the colon in an assignment command, or by a declaration
appearing after a command.

Expecting number

A number was expected but not found. Usually following a #.

Expecting ,

The compiler was expecting a comma (,) but did not find one. Occurs in a
conditional expression.

ELSE expected

The ELSE part in a TEST statement is not optional and was not present in
this case.

INTO expected

The control expression of a SWITCHON command must be followed by
the keyword INTO. In this case it was not.

60

: is expected

A colon is expected after a case label or DEFAULT but the compiler did
not find one.

Expecting identifier

The compiler was expecting an identifier e.g. after LET but did not find
one.

String too long

BCPL constant strings can only be 255 characters long.

Bad character

The character read was illegal in the present context. e.g. it could have
been a { instead of /*

Bad character constant

A character constant was badly formed, usually caused by a carriage
return following an asterisk.

Bad option line

The options in an option command must be separated by commas and
must end with a semi-colon or at the end of the line.

? is only allowed in definitions

Self-explanatory. The only undefined values allowed are the initialisation
values of simple variables in a LET command. ? anywhere else is illegal.

61

(iii) Semantic Errors

The rest of the errors are semantic errors which occur during phase two
of the compiler. These are usually due to the use of an invalid identifier name or a
badly constructed loop.

Expression/id mismatch

The number of left and right hand sides in a multiple assignment or
declaration was not equal.

Invalid assignment

You have attempted to assign to something which is not assignable.
e.g. a constant or a procedure.

RESULTIS outside a VALOF

A RESULTIS command was found outside a VALOF block.

LOOP found outside loop

A LOOP command is only legal inside one of the looping constructs.

BREAK found outside a loop

A BREAK command is only legal inside one of the looping constructs.

RETURN found outside PROC/FUNC

A RETURN command is only legal within a procedure or function body.

ENDCASE outside a SWITCHON

An ENDCASE statement was found outside the body of a SWITCHON
command.

VALOF must contain RESULTIS

A VALOF expression must contain at least one RESULTIS command.

62

Invalid application of LV

The LV or @ operator was used in an incorrect context i.e. on a constant.
LV is 'left value' and means the evaluation of an expression to obtain an address.

Dynamic free variable used

A variable was used in an embedded procedure which had been declared
in an outer procedure.

CASE/DEFAULT found outside SWITCHON

CASE or DEFAULT statements are only valid inside a SWITCHON
statement.

Undefined identifier

A variable was used which had not been defined or was not in scope
when it was used.

Labels need a global

A label was defined when in the scope of a local variable of the same
name. As the variable will be initialised to the value of the label, it must be a
GLOBAL or STATIC. If no variable of the same name is in scope then one will be
created.

Need constant expression

A constant expression was required but not found. Examples of constants
being required are the INLINE statement, declarations and CASE labels.

(iv) Internal compile errors

There is a fourth type of error but you should never see these. These are
internal compiler errors and indicate possible bugs in the compiler.

Please report any incidence of one of these errors to Arnor.

Error in translation node
Unexpected node in expression
Declaration error

63

This manual was brought to you by ROBCFG

Typesetting by Whitgift Business Services Ltd. The Studio, Ledbury Place. Croydon. 01-680-7997

