Price £1.10

PRINT-OUT

ISSUE EIGHT

Written by Thomas Defoe and Mark Gearing

Technical Contributor: Bob Taylor

INCLUDING:

oo 157

INIDEEX

Weincettnneour

Page
Page
Page
Page

3
29 -
41 -
42

EDITORIAL
SMALL ADS
SPECIAL OFFERS
SUBSCRIPTIONS

Featuren

Page
Page
Page
Page
Page

7 -
8 -
23 -
36 -
4 -

LETTERS PAGE
RESULTS
AMATEUR RADIO
NEWS AND VIEWS
MODIFICATIONS

Revican

Page

13 -

HOMEBREW SOFTWARE

Programming

Page
Page
Page
Page
Page
Page
Page
Page

4 z
9 -
16 -
15 -
21 -~
25 -
31 -
36 -

BEGINNER'S BASIC
TECHNICAL TIPS
MACHINE CODE
POKING AROUND
FIRMWARE GUIDE
ADVANCED BASIC
SOUND

INTRO TO RSX's

!

What's new in this issue
Readers' genuine bargains

Goods on sale

The no—fuss way to get Print—Out

Amstrad speaks on its new range
Competition winners announced
Getting your CPC to communicate
News from the CPC world

Add more to Artist Designer

More games reviewed...

More BASIC keywords

Reader's queries answered

More coding tips....

The essential pokes for your CPC
Vital reading

Tour of BASIC Tokens continues
Making sweet music on a CPC

ROMs and RAMs investigated

We would
Januarys

Every issue of Print-Out is produced by Thomas Defoe (Editor), Mark Gearing
(Assistant Editor) and is protected in the UK by British copyright laws. No
part of this publication may be reproduced in any form, without our express
written permission.The only exception to this are the programs which may be

like to express our thanks to Mr. Gearing and Black Horse Agencies
for the continued use of their photocopier in producing Print-Out.

entered for the sole use of the owner of this fanzine.

BLACK HORSE AGENCIES

Sponsored by
Januarys

Coitorial

WELCOME TO ISSUE EIGHT COF PRINT-QUT !!!

Many thanks to all of vou who sent in Christmas
cards and presents — they were appreciated very
much. We hope that you'll find this issue worth
the wait, and we'd once again like to apologise
for the delay.

As you can probably see, some of the artwork in
this magazine (along with some titles) has been
produced on an Apple Macintosh & Laser Printer.
Over the next few issues we intend to design as
many of the titles as possible in this way. due
to the far higher quality of printing. However,
don't worry — we're going to continue using our

trusty CPC for the main body of Print-Qut !!

We've also been making changes to the magazine,
based on the results of ocur guestionnaire. It's
been decided that a 'Readers' Letters Page' and
'"Technical Tips' columns will be re—introduced.
Also from next issue, we hope to have a regular
CFM section.

If you've any queries or problems with the CPC,
please write to us at the address below & we'll
do our best to solve your problem. We guarantee
that all letters will be answered personally by
one of the writers of Print-Out. The address is
the same for all orders, and is printed below:

PRINT-QUT, 8 Maze Green Road,
Bishop's Stortford, Herts CM23 2PJ.

COMPETITION WINNERS...
PAGE

[n\
usic| BEGINNER'S BASIC
- PART EIGET

This issue., we begin our exploration of some of the more advanced concepts in
BASIC programming. So we will start with an area which a few of our readers have
requested — that is DATA statements and their uses.

The best way of illustrating the main benefits of using data is to give a few
example programs. However before we can do that, we need to have a brief lock at
how the necessary commands work.

A data statement is basically a means of storing information until such time
as we need to use it. It always takes the form of DATA followed by a list of the
bits of information which we wish to store.

&

eg. DATA January,February,.March,April

Every of piece of information is called an ‘item' and all items are separated
by a comma. Whenever we need to retrieve this stored data, we must use the READ
command. The correct syntax is as follows: READ plus a variable (eg READ month$)
and whatever item is read will be placed in this variable.

READ always looks at the first bit of data that it finds in the program, and
then gets all of the information up until the comma (or the end of the line) and
puts it in the variable which follows the READ command.

If another READ command is then executed, it looks at the next piece of data,
after the one it has already got. Try this example:

10 READ a$:PRINT a$%
20 READ b$:PRINT b$
30 READ c$:PRINT c$
49 DATA January,February,March

When this is RUN, you should get the three months printed on the screen. Now
suppose you change the program to:

10 FOR i=1 TO 3

20 READ a$:PRINT a$%

30 NEXT i

40 DATA January,February,March

You should get exactly the same result. All it does is make it a bit neater &
more adaptable. If you folloew it through: Lines 10 and 30 set up a loop which is
executed three times; every time Line 20 is executed, it READs the next piece of
data (which is contained in Line 40). Thus the first time round it locks for the
first bit of data in the program (ie January): the second time it finds the next
piece of data (ie February); and on the last time, it gets March.

Suppose you now add the following line and re~RUN the program:
50 DATA April,May,June

Nothing new will happen and this is because we forgot to tell the computer that
it must now READ six bits of information. To do this, just change Line 10 to:

19 FOR i=1 TO 6
What happens if you ask the compute to read more information than you've really

included? Try it and see (change it to 10 FOR i=1 TO 7) ard the poor CPC gives
up and you'll get a rather unpleasant 'DATA exhausted' error!!

The great beauty of using DATA statements lies in your ability to change the
stored information very easily. Numbers, letters. words or a mixture of them may
be stored in a DATA line. So, change lines 20, 40 and 50 to:

20 READ a$:READ b:PRINT a$;" ";b
40 DATA January.2,February.6.54,March,3
5@ DATA April.4,May,®.45,June,9.21

Now, you'll get a little table of figures for each of the six months. Line 20
had to be changed in order that the numbers were read into a numerical variable
and the text into a string variable. Line 20 could alsc have been re-written as:

20 READ a$.b:PRINT a$;" ":b

Indeed you can read as many variables as you like with just one READ command.
It is also possible to have as much infcrmation in a single DATA line (or state-—
ment) as you like, providing it is not more than 255 ~ the maximum length of any
BASIC program line.

There is one other important trick which can be used in DATA statements, and
that is if we wish to include a comma in our data. However, usually a comma is
used in indicate where one piece of data ends., and another begins. Thus the line
60 DATA WELL. IT'S NICE TO SEE YOU! would be treated as two separate pieces of
information when they are read (ie. WELL and IT'S NICE TO SEE YOU!). still, it's
possible to overcome this by storing the text in inverted commas. Hence.

6@ DATA "WELL. IT'S NICE TO SEE YOU!"

would be treated as just one piece of information when it is read. This be very
useful in things like adventure games where a certain command produces a certain
response. However, the real power of DATA statements hasn't been introduced yet!
All of the extra possibilities exist because of an associated command — namely
RESTORE plus a line number.

Before looking at the RESTORE command, it is worth bearing in mind that data
can be stored anywhere in the program - at the beginning, in the middle, or all
jumbled up (the computer will still follow it all through logically, reading the
first bit of information it comes to, and then carrying on from there). It makes
more sense, however. to put all of the data in one place, so that we can find it
and alter it easily.

It is extremely important to make sure that all of the DATA is right and that
we haven't missed any bit out, as it's notoriously difficult to track down where
there is an error.

As mentioned elsewhere in this article, the READ command looks for the first
bit of data that it comes across in the program and then uses that. However, our
computer is provided with a means of altering where the first bit of information
to read is — this is the RESTORE command which has many uses.

The RESTORE instruction is not entirely precise as it can only specify a line
number as the start location. Suppose, we were writing a program which needed us
to print out a list of months and some figures twice. Without using RESTORE, we
would need to write out the data twice (once for each time it was needed). This
is needed because it would print out the information once and. in order to print
it out a second time, need to be supplied with the data again — as it cotherwise
it would run out of data and give us a syntax error.

Using RESTORE, the program below, which is a modification of the others, will
allow you to print out the data twice with no difficulty.

5 FOR i=1 TO 2
19 FOR i=1 TO 6
20 READ a$:READ b:PRINT a$;" ;b
30 NEXT i
35 RESTORE
36 NEXT 3
48 DATA January,2,February,6.54.March,3
5@ DATA April,4,May,0.45,June,9.21

Here, RESTORE is used without a line number., and in this case it merely tells
the computer to look for the data as if it were starting again from scratch (ie.
it would then start reading from line 40 again).

Finally here's a quick example of how RESTORE can be used to set up variables
with different values depending on the user's response.

10 INPUT '"Do you want the months in French or English (F or E) ? ".lang$
20 IF UPPER$(lang$)="F" THEN RESTORE 60 FILSE RESTORE 7@

30 FOR i=1 TO 6

4@ READ month$:PRINT months$

5@ NEXT 1

6@ DATA janvier,fevrier,mars,avril,mai, juni

7@ DATA January,February,March,April,May,June

If you have any comments on anything to do
with computing, then please write to:
PRINT-OUT, 8 Maze Green Road,
Bishop's Stortford, Hertfordshire CM23 2PJ.

DISC DRIVE PROBLEMS

I have seen second-hand disc drives from machines such as the BBC in my local
computer shop and I would like to know whether these can be used on the CPC with
the appropriate DOS software.If so, articles on installation of non—-CPC-specific
peripherals would be much appreciated.

TONY SHEPPARD, BRIGHTON

PRINT-OUT: As long as the disc drive complies to the Shugart standard it should
be possible to use it on the CPC. However, it is not something that should be
undertaken by the faint hearted. The best place for information on installing
a disc drive is in the Firmware Manual (Appendix 12.9/12.10) where it gives a
list of the pin—outs and some other important notes. Providing it is a second
drive, you should not need an alternative DOS to use the drive, in which case
it will act just like a standard Amstrad drive (you may want to use something
like RAMDOS to access the extra size of the disc). If you do not already have
an Amstrad first drive, you'll need to buy one as it includes the basic DOS.

AMSTRAD WRITES......

We recently wrote to Amstrad with some of the numerous gquestions which you have
raised concerning the Plus computers and, within a week, we'd received a letter
in reply. As these queries will be of interest to many readers, we have decided
to print the questions and their replies below. Amstrad also promised to answer
any further questions which our readers might have. So get writing!!

Do you plan to make a piece of hardware which will allow existing CPC owners to
run cartridge software 7
Amstrad do not have any plans at present for such a widget.
Will 6128+ owners be able to load tapes ?
No, CPC 6128+ owners will not be able to load tapes.
Will CF-2 discs remain at the same price ?
The CF-2 discs will not be reduced in price.
Will the 464+ be able to use a disc drive ?
As yet there are no disc drives available for the CPC 464+,
Are cartridges likely to be reduced in price ?
No, CPC cartridge software is to remain at the fixed price of £30.
Will the new hardware be accessible to the user ?
Regretfully the user will not be able to program the hardware himself.
Are the Pluses compatible with all CPC hardware ?
The computers will not necessarily be compatible with existing hardware.

QUESTIONNAIRE RESULTS

The response to our questionnaire was excellent and as a result we will try
to produce a magazine which i1s in tune to its readers' wishes. Printed below are
the results of some of the more impertant sections of the questionnaire.

BASIC Programming MORE — 40% SAME — 60% LESS - 0%
M/Code Programminkg MORE - 40% SAME — 50% LESS — 10%
Homebrew Reviews MORE — 35% SAME —~ 50% 1ESS - 15%
Public Domain MORE — 30% SAME — 50% 1LESS — 20%
Using CFM MORE - 75% SAME - 10% LESS - 15%
Solutions to problems MCRE - 75% SAME — 25% I1ESS - 0%
News and General MORE — 35% SAME - 55% 1LESS — 10%
Type—in programs MORE -~ 40% SAME - 50% LESS - 10%

And as a result of this., our letter page has been reintroduced as has a section
which is dedicated to solving people's problems. But as these areas are totally
dependent on readers' letters, we need you to kKeep writing in with comments and
queries. Also, as from next issue, there will be a regular CPM section, dealing
with every aspect of both CPM 2.2 and CPM Plus.

The winner of the PRIZE QUESTIONNAIRE was M KALIBABKA from SALTBURN-BY-SEA and
will receive a copy of PROTEXT on tape.

WINNERS

We also have a large number of winners from the competitions which we ran in
Issues Six and Seven and they are all printed below.

To start. well done to SUSAN ILSLEY from PRESTBURY and OWEN BROWN from TOTTON
who have both won copies of all of the programs listed in Print-Out on disc.

In Issue Seven we ran a competition in celebration of our first birthday, and
we had a tremendous response. Anyway, the three lucky people who each win a copy
of the fabulous Tearaway program from CPC Network are:

ROB MUNDIN from WATERLOOVILLE

A J COOK from WORTHING

S J LEE from HUNTINGDON
The other winners are D WEBB from CHORLEY who wins a set of dust covers and also
KEITH HANKIN who should soon be receiving a copy of Rick Dangerous II on tape.

Congratulations to you all.

HELPLINE

Every month we seem to get so many queries regarding various areas of computing
on the CPC, that we've decided to try and start up a helpline section. However,
the success of this area of Print-Out largely depends on readers contributions.
Therefore, if you wish to be entered into a regularly updated list, either with
an offer of help or a query, please get in touch with us at the usual address.

TTTriUvT Iy ryy
L]

_?)| TECHNICAL TIPS
/@% by Bob Taylor

5. Messina of Heywood has written in again enquiring abocut several matters.
Firstly he would like a faster way to write machine code. I'm not too sure just
what he means. If it's the writing process he'd like speeded up, I would suggest
that he starts a library of routines and uses these as building blocks in future
programs. Alternatively i1f programs were written in BASIC & these were converted
into code using a BASIC compiler, writing machine code could be dispensed with
altogether (what a terrible thought!).

On the other hand, if the intention is to try and write programs which run
faster, then compiled routines are notoriously longer than custom written code.
needing to be capable of handling every possible PASIC diversity. Even a library
routine should be pared down to run faster for a particular situation.

Writing faster routines isn't something to which other magazines and authors
address themselves. In PRINT-OUT. we do give tips on the subject, especially via
the comments in routines for assembly and these should be studied. In fact it is
a good plan to always lock at how other people have written programs — what may
then be seen will be not only how to write code better, but alas, in some cases.
how not to write it: don't be afraid to reject such programming.

Although tips on faster code are a great help. the real savings in time are
to be made in the way that the routine does its job (its algorithm). The choice
between algorithms is limited if the programmer is unaware of the existence of
alternatives and this is where studying other pecple's code comes in. Also, the
ability to look at the job to be done from a different angle is a powerful tool
for the programmer to exercise. Add to that a measure of anarchy - do not just
accept any rules you have been taught. but try to see if there is a way around
any limitations (I hope that my articles on RSXs illustrate this).

There is no definitive version of a routine: it can be rewritten a number of
different ways. and amongst these may be one that runs faster. Once the routine
is written and runs Ok, don't just leave it at that, but look at it again to see
1f there are points which can be improved upon. Good programming !

Another of the things which Mr Messina was interested in was a program to check
how many 'T' states a machine code instruction takes (we're still on the theme
of faster routines, I think). A 'T' state is a microprocessor clock pulse and it
takes a certain number of these for an instruction to operate.

The only timing device in the CPC that is available to the programmer 15 the
interrupt clock which has a frequency of 300 ticks/Second. This is much too long
a period between ticks to time instructions which could take only a microsecond,
SO the trick is to repeat the instruction many times and divide down the result—
ing time.

10

In the BASIC program below, the maths in line 50 gives a reasonably accurate
representation of the number of 'T' states an instruction takes, but in doing so
it illustrates a problem which any program designed for this puwrpose must face.
In the first article on RSXs in Issue Five, I explained that the microprocessor
clock ran at 4 million pulses/sec but this was virtually slowed down to approx—
imately 3 million by the insertion of wait states — clock pulses when the micro—
processor does nothing. (The reason for this slowing is to limit memory access
to one per 1uS). If we chose to time an instruction that does not need to access
memory, the result given by the program stays accurate; if it does use memory
however, or even if there is more than one byte to the instruction. the result
becomes increased by the number of wait states inserted.

To use the program, enter the op code(s) of the instruction in a data statement
in a new line 100. For example enter: 100 DATA 78

This is the code for the instruction LD A,B. When run the program will print ocut
the result, 4 T states. six times and this is the correct result for such an
instruction. Now enter: 100 DATA 7e this is LD A, (HD)
The result now is 8 which is not correct (the right figure is 7 T states) and so
the extra one is a wait state. Sometimes the six results may differ: the reason
for this is probably that a system interrupt occurred during the timing and
lengthened one result slightly.

Because of the possible discrepancies the program is provided for interest cnly.
A full list of every type of instruction with its ccrrect timing (including the
illegal instructions) are available from us if you send an SAE.

Not all instructions can be used in the program as many will cause a crash.
Of these a few can be used in combination with others to get round this preblem:
100 DATA e5,el this the code for PUSH HL:POP HL
Do not use any instructions which alter the B or C registers {these are used in
the program itself), and only alter memory with great care.

{711 1 "Machire Code Timer by Bob Taylor (copyright 1990)) 4
[BB] 10 ON ERROR GOTO 70 n I n

{BD] 20 FOR a=RB0O00 TD &B100:READ b$:POKE a,VAL ("&"+b%) :NEXT I l

[A3Z] 30 FOR a=1 TO &:t=TIME , N
{261 40 FOR n=1 TO 100:CALL &BO00:NEXT - — p—
[F41 50 PRINT INT((TIME-t-184)/8.2+0.5)"T":NEXT —

[EQ] &0 END All programsin Print-Outhave Linecheck
[981 70 IF ERR=4 AND ERL=20 THEN RESUME 30 codes which are enclosed in brackets at
[231 80 ON ERROR GOTO O:RESUME NEXT the start of a line. Don’t enter them in as
[771 90 DATA O1,eB,04 they’re designed to be used with

Linechecker to eliminate errors when
typing in programs which appear in this
magazine. Please note, all programs will
run whether Linecheckeris being used or
not. For information on how to use
Linechecker, please see Issue Three.

[3D1 110 DATA 0d,c2,03,80,05,c2,03,80,c9

CHNET)
I

We have received a query from Mr D Sherwood regarding the overriding of the
DMP 2000 Printer's DIP switches by the use of software (actually by sending ESC
code sequences to the Printer in most cases). As far as I can ascertain only the

following switches can be bypassed in this way:

o
/ l_l

ps1-~-1,2,3 *ESCT,"R",n {(chapter &, page 4)
DS1-4 JUST SEND AN EXTRA LF

DS1-5 TESC M9 or TESCT,"'8" (chapter &, page 3)
DS1-6 YESC’,"C",0,11 or TESC’,"C",0,12 (chapter 4, page 4)
DS1~7 X NOT POSSIBLE X

DS1-8 *ESCT, "x", 1 or TESCT, 'x",0 (chapter 3, page 4)
Ds2-1 X NOT POSSIBLE X

DS2-2 *ESC?, Q" or TESC’ . "N",n (chapter 4, page 4)
DS2-3,4 CHAPTER S WITH CHAPTER &, PAGE S5 ONWARDS

DS2-5 ¥ NOT POSSIBLE %

DS2-6 ¥ NOT POSSIBLE %

Ds2-7,8 CHAPTER 3, PAGE 4 ONWARDS

DS2-9,10 % DO NOT USE X

A quick peek inside my DMP 2000 shows that DS2-9 and 10 are both connected into
circuit. Why we shouldn't use them I don't know and I'm not willing to sacrifice
ny printer to find ocut. Perhaps a reader already knows and can enlighten us!

|‘_‘|ll\l|"n'_'lll (g]| EC

TN Y o
10 REM File Header Reader () 1921 I have a game which 1s included on a
20 DATA 21,92,00,46,21,99,00,11,00 tape which had a number ¢f other games
30 DATA CO,CD,77,BC,ED,43,93,00,ED and programs and was always a bit of a
40 DATA 53,95,00,2A,95,00,CD,83,BC chore to find. plus the length of time
30 DATA 22,97,00,CD,74,BC,C9,00,00 it takes to load from tape. As I own a
60 RESTORE 20 disc drive I thought it a good idea to
70 FOR i=1 TO 36 transfer this particular game to disc
80 READ a%$:POKE &&F+i, VAL ("&"'+as$) for speed of loading. The main program
100 NEXT i which 1sn't protected loaded from tape.
120 INPUT "Enter filename: ",files$ There are three binary files but after
130 b=LEN(files$) many attempts 1 cannot transfer these.
140 FOR i=1 TO0 b Despite following the instructions in
150 b$=UFPER$ (MID$((file$),1i,1)) The manual for the DD1. I keep getting
160 POKE &98+1i,ASC (b$) a 'Memory Full' message.
170 NEXT i JIM PROCTOR
180 POKE &92,b
190 KEY 138, "PRINT HEX$ (PEEK (&95)+ If you run the program on the left and

PEEK (&36) ¥256) , HEXS (PEEK (&F3) +PEEK follow the instructions., then when vou

(&F4) ¥256) ,HEX$ (PEEK (&97) +PEEK (2598) are returmned to BASIC, press F. or '.'

X256) on the keypad. The first number is the
200 CALL &70 START ADDRESS, the second the LENGTH &

the last i1s its EXECUTION ADDRESS.

If the first file has a name of FILEl; start of &4000; length of &2000 and
an execution address of &2678, you would use the following lines to copy it:

' TAPE : MEMORY &4000-1:0.0AD "FILEL"

iDIBC:SAVE "FILE1",B,&4000,82000, &2678

1

12

NN
TN

Mr D Webb of Doncaster collects BASIC programs and has noticed that Control
Code characters are sometimes present within quotes instead of in the usual form

CHR$ (n), and wonders why programmers have done this.

l-I\IT"I | B T T 1Y I
i 1 L I _

Whenever I've used this form of entry it's because the characters take a few
less key strokes to enter compared to the conventional way. with the added borus
of taking less room in memcry. A further plus is that it does runs fractionally
faster. However, this method does make a program more difficult to check. unless
the programmer is able to recognise the symbols quickly through practice. Using
Control Codes in strings is not a practice to recommend for listings which other
people need to copy.

Control Code characters can be entered into strings in a program by pressing
CONTROL together with the keys A to Z, [N\ 1 ~ _ . In this form, or in the more
usual CHR$(n) way. they can be used for various screen controlling operations as
detailed in the hardbook. Note that some require parameters, which can also be
entered as symbols or characters (whose ASCIIs are the values required). It is
unfortunate that one of the most useful values, CHR$(0) ie the NUL character. is
not available in this form.

When LISTing via a Printer, no Control Cocde characters will be printed: most
will be ignored, while the rest will cause the Printer to operate in a different
way. giving unexpected results. Control Codes can be displayed using the correct
ESCAPE sequence (ESC. "I", 1 for the DMP 2000) but of course thils cannot be used
from within a LISTing.

Graphics characters are also present in some programs. One very good reason
for doing this is to obtain an early representation (within the program listing)
of what will appear when RUN. Graphics characters can only be used in this way
by first printing separately on the screen using the command FRINT CHR${(n) and
then COPYing the result into the program line. One Graphics character that can't
be COPYed is CHR$(128) which prints on the screen as a Space — COPYing this will
result in a SPACE, ard not the proper character.

Scmetimes through accidental faulty memory management, the UDG (User Defined
Graphics) area becomes corrupted by other data. If this should happen. any char-
acters stored there will display incorrectly, because they are made up of the
corrupted bytes. Again, these 'false’ characters will COPY correctly.

¥hen it comes to Printing a LISTing of any Graphics characters, we run into
several problems. 5Since the CPCs can only send 7 bits to a Printer, and Graphics
characters are usually CHR$(128) and above. the eighth bit which they need, will
be lost. Should we have an 8 bit Printer Port. bit 7 will be sent but the result
will depend on the Printer. The DMP 2000 for instance produces italics: either a
Jumbled sequence of characters for codes 128 to 159, or characters 32 to 127 for
the rest. A few other Printers do hold graphics characters above code 127 but it
1s extremely unlikely that these will match those present in the CPC.

BOMEBRE W

SOZ7WARE
MAG’C’AN ’s APPREN TlCE by SIMON AVERY

Following on from the highly commendable adventure games, FIRESTONE and JASON
AND THE ARGONAUTS is MAGICIAN'S APPRENTICE.

This game has the same style as the previous ones. but this is not swprising
as all three have been designed using the Quill.

In it, you play the role of Wuntvor, apprentice to the magician Ebeneezum who
one day disappears. Desperate with worry. you take it upon yourself to find and
rescue him from whatever perils have befallen him.

There was no loading screen which I found a little disappointing as I feel it
is important to have graphics in an adventure game of this type. to break up the
monotony of the text.

The locations in the game were fairly interesting and varied although scme of
the descriptions were rather standard to most adventure games. The places that I
visited were nothing out of the ordinary — they had all been done before. Having
said this, I did get enijoyment from some of the puzzles that Simon had invented,
as they ranged from the very easy to the extremely difficult.

The game lacked any truly original or novel ideas. As usual in Simon's games.
there were a few characters who I could talk to. and this helped to liven things
up a bit. A score feature was incorporated into the game which I liked and again
Simon's own brand of humour was very apparent.

Whilst humour can sometimes spoil the atmosphere of a game like this, all of
Simon's adventures contain various jokes and they're used to good effect. Indeed
they add to the game greatly — some of them are even funny!!!

Unfortunately. there were no graphics with this game which was again a little
disappointing — sometimes, though. it can be a blessing as many homebrew authors
include them for no real reason and many drawings are indecipherable. Therefore,
the lack of graphics isn't a real problem in this game, especially when the text
wasn't boring.

The atmosphere created in the game could never really be described as 'tense’
or 'exciting' but the adventure did paint a clear ard vivid picture in my mind,
and. when coupled to his 'strange' sense of humour. the game could become quite
addictive. A failing of most homebrew adventures is that there's no real feeling
of threat or danger - and this was no exception.

However, setting aside these minor niggles, I enjoved it for a while, but it
wasn't very different from the vast majority of adventure and it became a little
tediocus for me. especially after having played so many other homebrew games. But
apart from that, the game was good ard well polished.

MAGICIAN'S APPRENTICE costs £2.50 on tape and £2 if you send a disc yourself.
The game represents good value if you like adventure games, if you don't, then I
wouldn't recommend it to you. However, it's a good effort, interesting at times,
humorous, and a must for adventure gamesplayers.

13

Simon Avery has been a prolific adventure writer and listed below are some of
his many adventures. Most are available on both tape and disc and are incredibly
cheap, as they are in fact public domain. No doubt Simon will be glad to inform
you of their prices and anything else that you wish to know about them.

The Public Domain adventures which are on sale are as follows:
'ROOG' 'TIZPAN' 'WELLADAY' 'FIRESTONE'
'JASON AND THE ARGONAUTS' 'SPACED OUT'
'DUNGEON' 'DOOMLORDS (Parts 1,2,3)°
"CAN I CHEAT DEATH ?' and 'ADULT 2'

'MAGICIAN'S APPRENTICE' is the only non-PD adventure and is reviewed above.

You can reach Simon at: MORDEN FARM, OLD EXETER ROAD, CHUDLEIGH. DEVON TQ13 ODR.

TAPE ADVENTURES

Another author of homebrew software, Tony Kingsmill, wrote in to tell us that he
now has a collection of his best adventures available on tape. All of the games
have been reviewed in Print-Out and they are REVENGE OF CHAOS, ISLAND OF CHACS.
ALTEN PLANET and LORDS OF MAGIC. Up until now, these have only been available on
disc and were given favourable reviews by us. Tony has called this new selection
"THE TAPE ADVENTURE COLLECTION' and the pack is available from him at the price
of £4.50 for all four games. You can contact Tony at the following address:

TONY KINGSMILL, 202 PARK STREET LANE, PARK STREET, ST ALBANS. HERTS AL2 2AQ.

STUNNER

In the Issue Six of Print-Out I reviewed tluxee games written by Adrian Sill -
Crimson, Traitor and Snookered. Now he has included these games on a compilation
called 'STUNNER' which comprises eight games or tutorials.

The collection was presented in an extremely polished manner with an impress—
ive title screen, complete with clear, bold text. After selecting an option from
the main menu, detailed game instructions appeared on the screen and, along with
the crisp and neatly printed accompanying documentation, the game's scenarioc and
objectives were clearly detailed. Having eight games in the compilation. there's
a wide enough choice to provide hours of enjoyment.

14

The first game was called ANIMAL GAME, which is a simple variation on the old
‘animal, vegetable, mineral' theme. It was fairly straightforward to play, but 1
felt the game needed some finishing touches done to it. and I fournd its style a
little too 'tacky'.

Next was CRIMSON, the arcade adventure I reviewed in Issue Six. This was the
best game of the compilation and it involves steering a small spacecraft through
a screen which is littered with various obstacles. Unfortunately your ship keeps
on falling and you cannot control 1its speed, but only its height. It was a well
produced and very polished game — its simplicity and originality made it hugely
addictive. It's just a shame that it hasn't got even more levels as I certainly
enjoyed playing it.

FRENCH TESTER was the next program. It is a multi—choice educational program
which lists a word in either English or French and you have to choose the right
translation from the four possibilities given. However. it was clearly aimed at
those just beginning French and it could have been enhanced with different skill
levels. 5till, the program was nicely laid out and I liked the sprite that moved
across the screen when vou got it right or wrong. All in all a very useful, even
if a bit limited.

MATHS TUIOR follows in the same vein as the last one. You could test yourself
on multiplication, addition, subtraction, division or a mixture of all fouwr. It
was virtually identical to French Tester, except that numbers were involved and
not words. Again it really needed various skill levels - but still good fun.

MAP UK was an interesting utility. It printed a map of the UK with a grid on,
and allowed you to add borders or to place a number of known towns on it. Quite
how useful this is I'm not sure, but it was certainly well done and detailed.

MR TRIVIA was probably the hest educational game of the compilation. It was
more interesting than the others and quite challenging, although not impossible.
Again, you are asked twenty questions and have to choose between one of the four
possible answers.

SNOOKERED and TRAITOR were the two last games on Stunner and these were both
reviewed in Issue Six. These were also very good games.

I thought that it was a good blend of arcade and educational games along with
the odd utility. One or two of the programs, as I have mentioned, were not very
good at all but the majority were excellent. Crimson, Traitor and Snockered were
certainly the dominant games. easily being the best three.

At a price of £4.99 on tape and £6.99 on disc it is definitely a bargain well
worth having. I'd hours of fun ard enjoyment from it, and I'm sure you will too!

ADRIAN SILL. 19 SHERWOOD DRIVE. S LANE ENDS, SKELIOW, DONCASTER, YORKS DN6 8NY.

15

16

Machine

Programming your Z80
.Lode...

COMMANDS

Welcome to this issue's article on Machine Code. As from Issue Nine we will
be putting the commands that we have come across in programs and looking at some
Machine Code routines. However, this issue we're going to be investigating a few
more commands — some of which are new and some which we've already used without
explaining fully.

AV

(D

The first of these, is the NEG mnemonic. This only works on the Accumulator
and it makes the number in A negative. Hence at the end of the example below the
A register holds -105. Of course, this is stored in 'Two's Complement' form (see
Issue Seven for more details) and so will be represented by 10010111 in binary
- 151 in decimal.

ORG &8000

1D A,105 ; A holds 185

NEG ; A 1s now negated (holds -185)
RET

m N7
L L

The next one 1s very useful and we have come across it briefly before - the
DINZ instruction. This command is often used in looping and it relies on some of
the condional techniques which we loocked at in a previcus issue. DINZ is really

an abbreviation of a couple of commands (ie it's a short cut) and these are:

DEC B

LD AB

CP 0

JP NZ.lahel

You can see why we have an abbreviated form! What happens is as follows: At
the start of your loop, you load the B register with a value which is the number
of times that you wish the loop to be executed. This LD instruction is followed
by a label (such as '.loopl') and then the part of the routine which you want to
be used every time the program goes around the loop. At the end of the loop. you
put a DINZ instruction {(in ouwr case this would be 'DINZ loopl'). What this means
is that each time the computer goes round the loop, it decrements B by 1 and it
locks to see if B equals =zero. If it does, the computer continues with the rest
of the program. If it doesn't, the CPC jumps back to the beginning of the loop &
continues executing the routine from there.

Of course, it's important to ensure that the B register is not corrupted in
the routine which is enclosed by the loop. To prevent this we can use PUSH & FOP
instructions (which we looked at in our last issue) to preserve the B register.
It is. therefore, also important to make sure that anything else that is PUSHed
onto the stack is also POPped off (often we can ignore this problem by ensuring
that we don't use B in our routine).

It is sometimes useful to be able to alter the value of loops, according to
the result of a certain action within the loop. This can be achieved by altering
the value of B during the actual loop.

The routine below illustrates these points with a fairly pointless example.
It goes round the loop and prints all the numbers from one to nine. Each time it
also asks if you want to print a number again (it prints a question mark & waits
for you to enter something). If you want it to repeat a number, then enter 'Y' &
the program will automatically adjust the size of the loop. Otherwise, any other
key will be treated as if you had typed 'N'.

ORG £80020 ; tells the computer where to put the routine in memory
1D B,9 ; B is loaded with 9
1D A.49 : A 1s loaded with 49 - this is the ASCII for '1°
.loop
PUSH BC ; Put BC on the stack to preserve register B
CALL &BB5A ; Print the character which is in A
INC A ; A is increased by cne (A=A+1)
PUSH AF ;: The new value of A is put on the stack to preserve it
1D 2,63 ; A is loaded with 63 ~ this is the ASCII for '?'
CALL &BBSA ;: and the question mark is now printed
CALL &BB06S : The computer waits for a key to be pressed
CP 89 : and the value returned is checked against 89 ('Y')
JP Z.dummyl : and if it is 'Y' it jumps to the label 'dummyl’
CP 121 ; otherwise the value is checked again 121 ('y")
JP NZ,dummy ; and if it is not 'y' it jumps to the label 'dummy’
.dummy 1
POP AF ; AF is removed, A contains the next number to print
POP BC ; BC is removed, B contains the number of times to loop
INC B ;: B=B+l. the number of loops is increased by cne
DEC A ; A=A-1, the number to print is decreased by cne
PUSH BC ; BC is put back on the stack
PUSH AF ; AF is put back on the stack
.dummy
POP AF ; AF is popped from the stack
POP BC ; BC is popped from the stack. B holds number of loops
DINZ 1oop ;: B is decreased by cne and checked to see if it equals

one and if it doesn't the program jumps bhack to the
label 'loop' and the loop is repeated
RET ; else the program is ended

17

The above program can seem quite complex at first glance, but it uses only
commands and concepts which we have already talked about. The best way of under—
standing it is to follow it through, in the order the computer would, with real
numbers in and see if you can make sense of it. The routine has a branching part
contained within another conditional loop and this can add to its complexity. As
from next issu we will be starting to look at more useful routines and trying to
use the commands, which we have looked at, for some worthwhile purpose.

n_n I
lh--lH/L-

The final set of mnemonics that we're going to look at aren't real commands
but are what are known as directives. These are not machine command instructions
but are special notes for an assembler, and they make life very much simpler for
the machine code programmers.

Most assemblers have a large number of directives, but we are only going to
lock at some of the more common ones and they are: DB (or DEFB or DEFM or BYTE) .
DS (or DEFS or RMEM), DW (or DEFW or WORD) and ORG.

Note that for some assemblers there may be other alternatives to these.

ORG has been used in almost every Machine Code program that we have written, and
tells the computer where that particular routine is to be located in memory .
For example, the above program begins with ORG &8000 and it tells us that it
is to be located at address &800¢.

DB (is an abbreviation for Define Byte) and does exactly that. The DB directive
tells the computer to put one byte of data aside, and then to set that byte
to whatever the value following it is. For example DB 45 would set that byte
to have a value of 45, and so is very useful for storing data. You can also
store text in this way, or a mixture (eg DB "Hello out there',13,10) However
note that scme assemblers might insist that you use DEFM if you want to hold
any text.

DW (is an abbreviation for Define Word). In code, a WORD is a 16-bit number {eg
&C00o or &@567) and, as we already know, a 16~bit number needs two bytes to
store it. Also, the number is held with its low byte first, followed by its
high byte (eg &67,850). What the DW directive does. is to sort all of this
out for us automatically - it reserves the necessary memory and then stores
the number with its low byte first, then its high byte. So an example of it
would be DW &8567.

DS is possibly the least used of all of the directives and merely reserves some
space (upto 236 bytes) which can be used as a buffer. All of the bytes that
have been reserved is then filled with zeros, ready for use as as a storage
place.

18

BASIC Poking Around M/CODE
A Sebection of Woelut Tepr

This month's 'Poking Around' is mainly concerned with the peripherals which
can be added onto the hack of your trusty CPC. There are also some handy tips to
use 1in your BASIC programs and the usual collection of handy PEEKs and POKEs.

Detecting_a Multiface

First of all, here's a neat way to test for a Multiface device on a CPC. If
it finds a Multiface. 1t will crash the computer. You can fool it by turning the
Multiface off, as explained in yow manual. Just type OUT &FEES,:ES

Using CTRL-ENTER

It's anncying for 6128 users to be unable to use the CIRL-ENTER combination
to some useful effect. On the 464 with cassettes. it's fine to be presented with
RUN" followed by ENTER automatically. However on a 6128 or 464 with a disc drive
that just gives an errcor message — the ROM really should have been rewritten for
discs! Anyway. here is a little tip that will give RUN" without the ENTER. ready
for you to enter the required filename.

For a 6128: POKE &BSAD,Q For a 464 with a disc drive: POKE &B443,0

On-line Printer ?

Another useful tip for checking the state of your peripherals, is this one
which tells you whether your printer is switched on and is 'On Line', by use of
the command PRINT INP(&S50@). If it is ON and is 'On Line' this should give you
the value &1E (30) and if it is OFF it will give 94 (&5E). Unfortunately. there
is no way of detecting the 'Paper Out' senscr by software.

BASIC tricks

Now fcr a couple of BASIC programming technigues. Sometimes it's necessary
to increase a variable each time something is done. If this value should revert
to zero when it reaches a certain number, this is how it is usually done:

110 a=a+1:IF a=10 THEN a=0
Unfortunately. this has the side effect of meaning that any common actions must
be on another line — which is sometimes undesirable. To get round this, use:

110 a=(a+1)MOD 10:

Secondly, it may be necessary for the variable to toggle between 2 values only:

219 IF a=2 THEN a=7 ELSE a=2
This can be simplified using the formala: a= <{sum of values> — {current value>

210 a=(7+2)-a

19

Bank switching

This next item deals with the extra memory of a 6128 (or 464 with a memory
expansion). The command OUT &7F00,&C4 (or &C5,8C6,8&C7) will load the designated
RAM bank into the memory area 84000 to &7FFF in place of the normal memory. The
Bank will remain installed, allowing data to be LOADed or SAVEQ there until the
machine is reset, or OUT &7F00,&C0 is used to return the memory to ncrmal. Note
that no other values should be used.

Disc drive tips

And now here are & whole host of disc drive tips. On the 6128 there is the
DERR (disc error) function but unfortunately. this is not available on the 464.
As yet, I have not found out if the value can be ascertained somehow, but here
are the codes for a 6128, and what they mean:

DERR Number What it means
144 Bad command (eg. LOAD "1234546789ABCD" or Disc Missing)
145 File already exists (eg. when RENaming a file)
146 File not fourd
147 Directory full (more than 64 entries)
148 Disc full
149 Disc changed (eg. while input/output files are open)
150 File is read only (eg. set by CPM)
194 Disc is write protected

Although there are more, these are the common ones.Another thing which is
frustrating is the 'Retry. Ignore or Cancel' message which pops up when you've
forgotten to insert a disc or it's write protected. On both a 464 and 6128 you
can overcome this by typing: POKE &BE78,&F

POKE &BEb&6,1 reduces the number of times the mechanism grinds away trying
to make sense of an unformatted or faulty disc. Sixteen is the normal value but
zero equates to 256 — =o don't try it as 1t will take forever.

For 6128 owners. PRINT PEEK(&AD?1) is the egquivalent of PRINT DERR.

Protected BASIC

And finally back to BASIC again. To prevent your program from being listed
when it has been RUN. type POKE &AEZC,1 on a 6128 (or POKE &AE45,1 on a 464) as
the first line of your program.

Alternatvely. make sure the first line of yowr program is 10 REM
Now type POKE 372,225. It will be impossible to list the program. and it can be
executed only by using RUN 20.

That's i1t for this issue but, hopefully, we will have found some more odds
and ends by the time Issue Nine comes round. Remember i1f you've any snippets of
information, please send them in.

20

012

013

014

215

216

217

018

-The Firmware

VITAL READING ON M/CODE

&BB24
ACTION:
ENTRY:
EXIT:

NOTES:

&BB27
ACTION:

ENTRY:
EXIT:
NOTES:

&BB2A
ACTION:

ENTRY:
EXIT:

NOTES:

&BB2D
ACTION:
ENTRY:
EXIT:
NOTES:

&BB30
ACTION:
ENTRY:
EXIT:

NOTES:

&BB33
ACTION:
ENTRY:
EXIT:
NOTES:

&BB356
ACTION:
ENTRY:
EXIT:

NOTES:

KM GET JAYSTICK
This reads the present state of any joysticks attached
No entry conditions
H and A contain the state of joystick @, L the state of joystick 1;
all others preserved
The joystick states are bit significant and are as follows:
Bit @ - Up Bit 1 - Down Bit 2 - Left Bit 3 — Right
Bit 4 - Fire2 Bit 5 - Firel Bit & — Spare Bit 7 - Always ©

KM SET TRANSLATE
Set the token/character that is assigned to a key when neither
SHIFT nor CTRL are pressed
A contains the key number; B contains the new token/character
AF and HL corrupted; all others preserved
Special values for B are as follows

&80 - &9F this correspond to the expansion tokens

D causes the CAPS LOCK to toggle on and off
&FE causes the SHIFT LOCK to toggle on and off
&FF causes this key to be ignored

KM GET TRANSLATE
Find out what token/character will be assigned to a key when
neither SHIFT nor CTRL are pressed
A contains the key number
A contains the current token/character that is assigrned; HL and
flags are corrupted; all others are preserved
See above (&BB27) far special values that can be returned

KM SET SHIFT
Set the token/character that is assigned to a key with SHIFT
A contains a key rumber; B contains the new token/character
AF and HL corrupted; all others preserved
See above (BB27) for special values that can be set

KM GET SHIFT
Find out what token/character will be assigrned to a key with SHIFT
A contains the key number
A contains the current token/character that is assigned; H. and
flags are corrupted; all others are preserved
See above (&BB27) for special values that can be returned

KM SET CONTROL
Set the token/character that is assigrned to a key with CTRL
A contains a key number; B contains the new token/character
AF and HL corrupted; all others preserved
See above (&BB27) for special values that can be set

KM GET CONTROL
Find out what token/character will be assigned to a key with CTRL
A contains the key number
A contains the current token/character that is assigned; HL and
flags are corrupted; all others are preserved
See above (&BB27) for special values that can be returned

21

22

019

020

021

Q22

223

024

025

@26

027

028

029

&BB39
ACTION:
ENTRY:
EXIT:

&BB3C
ACTION:
ENTRY:
EXIT:

&BB3IF
ACTION:
ENTRY:
EXIT:
NOTES:

&BB42
ACTION:
ENTRY:
EXIT:
NOTES:

&BB45
ACTION:
ENTRY:

EXIT:

&BB48
ACTION:
ENTRY:
EXIT:

&BB4B
ACTION:
ENTRY:
EXIT:
NOTES:

&BB4E
ACTION:
ENTRY:
EXIT:

&BB351
ACTION:
ENTRY:
EXIT:

&BB54
ACTION:
ENTRY:
EXIT:

&BBS7
ACTION:
ENTRY:

EXITy

KM SET REPEAT
Set whether a key may repeat
A contains key number; B = &0@ then rno repeat; B = &FF then repeat
AF,BC and H_ corrupted; all others presered

KM GET REPEAT
Finds out whether a key is set to repeat or not
A contains a key number
If zero is false then it repeats; if zero is true then it does not

KM SET DELAY
Set the time before the first repeat and the repeat speed
H contains the time before the first repeat; L holds the speed
AF corrupt; all others preserved
The figures in H and L are given in 1/50 seconds; a value of @
counts as 236

KM GET DELAY
Find out the time before the first repeat and the repeat speed
No entry conditions
H contains the time before the first repeat; L holds the speed
See above (&BB3F)

KM ARM BREAKS
Arms the break mechanism
DE holds the address of the BREAK handling routine; C contains the
ROM select address for this routine
AF,BC,DE,HL are corrupt; all others preserved

KM DISARM BREAK
Disarms the break mechanism
No entry conditions
AF and HL corrupted; all others preserved

KM BREAK EVENT
Generates a BREAK interrupt if a BREAK routine has been specified
No entry conditions
N and H. corrupted; all others preserved
Only takes place if BREAK routine has been set up by KM ARM BREAKS

TXT INITIALISE
Completely initialises the text mode (as when switched on)
No entry conditions
AF,BC,DE and HL. are corrupted; all others are preserved

TXT RESET
Resets the control code table and text indirections
No entry conditions
AF,BC,DE and HL are corrupted; all others are preserved

TXT VDU ENABLE
Allows characters to be printed to the current stream on the screen
No entry conditions
AF are corrupted; all others are preserved

TXT VDU DISABLE
Prevents characters to be printed to the current stream
No entry conditions

AF are corvupted; all others are preserved

AMATEUR
RADIO ON A CPC
=

t — by Jim Proctor

Having been interested in most things electrical
from an early age & then being employed in tele—
communications, first as an operator & later involved with the installation and
maintenance of radio equipment, it was perhaps inevitable that I would progress
to amateur radio.

Similarly. with the advent of micro-computers, the urge to find out how to
operate them and what made them tick was immediately there, and it was not long
before I'd acquired a second-hand CPC. Early efforts with the computer involved
a lot of reading & getting to grips with simple BASIC, and I soon realised that
here was a tool which had great potential for being used in conjunction with my
present hobby of amateur radic. Data storage came first.

Residing on disc. I've a list of all my radio contacts with other amateurs
and this is so easily accessed when necessary instead of having to leaf through
the written log. I discovered that there was a wealth of public domain software
easily obtainable which dealt with electronic design of radio equipment, aerial
parameters and propagation, satellite & geographical conditions and other asso—
ciated subjects applicable to amateur radio, depending on the particular inter—
est of the moment.

All of this was of course. using the computer in perhaps its primary mode.
the storage, retrieval and manipulation of data at high speed, thereby reducing
drudgery and avoiding error — given that the operatcr is wide awake and all the
bugs have been eliminated! There was however a new interest emerging which inv-
olved truly marrying the computer to the radio so that one was the extension of
the other - namely data communication.

The simplest approach was, in amatewr parlance. RTIY.The letters stand for
'Radio TeleType', whereby teleprinters are joined by a radio link rather than a
land line. However despite their electro-mechanical ingenuity. teleprinters are
large, noisy and cumbersome and the computer was their natural successor.

With the appropriate software and a relatively simple interface it was not
long before I was 'talking' to another amateur via the keyboard. I have regular
contacts world-wide now and, as the internaticnal language 1s English, there is
no problem in that respect: but if you wish to practise a foreign langquage it's
an ideal opportunity and a hard copy can be obtained on the printer if desired.

As it is based on an old and, by modern standards, unsophisticated system.
100 percent error free copy isn't always possible especially with a far distant
station, due to the vagaries of low power radio communication. However, therein

lies the challenge; a continual effort to improve the equipment to reduce error.

23

Another aspect i1s listening to commercial broadcasts which use RTTY, especially
the Press Associations when you can get the news first-hand! The relevant soft-
ware is open to experiment and can be tailored to meet the needs of the user so
that there is a steady source of interest ideally combining the two hobbies.

Many pecple enjoy listening to radio transmissicons over the whole spectrum & as
such require no licence or special qualifications.It's essential to have a good
quality communications type receiver for the full benefit to be obtained & this
is certainly required for the reception of data systems via the computer.

To be able to transmit on the frequencies allocated to Amateur Radio, a licence
is required. To qualify for this, a written examination must be passed covering
basic electrical/radio theory and practice & licensing conditions. The examina—
tion is in the form of multiple choice questions, and is not as difficult as it
may sound; but nevertheless requires a short course of study. For anyone who 1s
interested an initial approach to the Radio Society of Great Britain, see below,

is recommended.
Aerial \/

The transmitter/receiver is a
specialised unit for amateur radio V.D.U.
and the terminal unit was built by
myself from details supplied to me

by the British Amateur Radio Tele-— - y,
: Terminal €] Receiver

data Group. I should mention that Unit a

terminal units (interfaces) can be Computer ! Transmitter

purchased ready made. with all the

necessary cables, & that they come \

in many shapes and guises, giving V Y Tape or
different facilities. The software ‘ Disc Drive
used 1is by Scarab Systems & is one

of two programs which I hold appl- /’_—f__—___’
icable to the Amstrad CPC 464. Printer

Information on all aspects of Amatewr Radio can be obtained from the Radio
Society of Great Britain, Lambda House, Cranborne Road, Fotters Bar. Herts
FN6 3JE.They publish a wide selection of books & would be only too pleased
to assist anyone wishing to become involved in the hobby.

There is the British Amateur Radio Teledata Group and membership enquiries
should be addressed to Anne Reynolds, G6ZTF, 169 Bell Green Road, Coventry
CV6 7GW. As the name suggests they cover the data communicaticn side & are
a valuable source for software and hardware.

Another useful group is Sinclair Amstrad Radio User Group. whose secretary
is Paul Newman G4INP,3 Red House lane,leiston.Suffolk IP16 4JZ. This group
deals with all aspects of radio/computing and with particular reference to
Sinclair and Amstrad computers.

24

ADVANCED BASIC BY Bob Taylor

BASIC Tokens(2

4L

S

U«
HIATCH - A

L CnzV LTI T
FINZWN e
Following our look at Tokens in the last issue of PRINT-OUT, this month I'm

providing an RSX called '!MATCH' which exploits that information. The command is
intended to be used for finding occurrences of statements in a BASIC program.

'MATCH will list all of the lines which contain the required data and this could
be anything from a line number or a variable up to a whole BASIC statement. It's
possible to restrict the search to a limited range of line numbers if required.

There have been other similar RSXs in the past that have been able to find
just variables; they have done so by locking for the correct variable token and
then checking the characters of the variable name. They have been restricted to
Jjust variables because the multiplicity of tokens would necessitate a different
kind of search for each type of constituent of a program line (variable,string,
numbey, command , print item,etc).

A stumbling block, when entering a piece of BASIC as the data to be locked
for, is the way that RSX parameters are treated when encountered. Any variables
are presented as either the 'two byte value' or as the 'string descriptor' (the
latter also applies to strings); numbers are converted to a two byte form only;
commands would be treated as variables, and print items would probably throw up
a "8yntax Error’. And this is not how the same 'type' would appear as part of a
program line.

On the other hand, this RS5X uses the fact that any thing put in a separate
statement is automatically converted to the correct tokens etc. on entering the
line. So we close the IMATCH command with a colon as if we had finished it. but
then we follow this immediately with the statement (or part of statement) which
we wish to match. It is this statement, now converted to tokens, which is used
as the list of bytes to be searched for.

However our RSX routine will have to manipulate BASIC:

1) to enable this statement to be used as the search list
2) so that the commands in the statement are not actually run.

I mentioned the BASIC Parser in the last article — it is the mechanism used
by the BASIC interpreter to scan along a program line and carry out the commands
it finds there. In order to keep track of where it had reached while it performs
an RSX or CALL routine, the BASIC Parser position's address is stored in 2 bytes
in the Operating Systems' upper workspace (at &AESS/9 in the 6128 and at &AE7S/6
in the 464). On completion of the routines the address is taken from these bytes
and so the Parser moves on to the next part of the program correctly. However it
is possible for us to use and alter this address if we want to.

25

26

On entry into an RSX routine the Parser is pointing to the end of statement
byte (&91) or the end of line byte (&00) which immediately follows the statement
containing the RSX command.

In our case this position is just before the statement we are going to use
to search for, as explained above, so we have a ready made start point provided
for the byte list. If we've moved the Parser on to the end of statement byte or
the end of line byte following this statement, then when we leave the RSX, this
statement will have been skipped over without being run, and the Parser will be
none the wiser. Another useful result of moving the Parser on like this is that
the incomplete statements used for matching (e.g. 'LEN') will not throw up any
'S8yntax Error's because they are not seen by the Parser; the processes of token
conversion on input, and of Parsing at run time, are carried out to 2 different
standards.

The method used for searching the program was not the usual one of scanning
each line for an occurrence of the first byte in the search list, using the CPIR
instruction, as this could throw up spurious sightings, such as finding a string
within the characters of an RSX or variable name.

Instead, each token or item in the line is checked against the start of the
search list and if not matching then the correct number of bytes is skipped over
(by using the information gained last issue) to arrive at the next token or item
and the process repeated.

On finding an initial match, then a byte for byte check is made between the
search list and the contents of the line from that point.If the line ends before
the list has all been checked or if there is a mismatch, then the initial search
is resumed either at the token or item following this initial match, or if need
be, on the next line.

The BASIC loader will alter the routine for whichever version of CPC it is
installed in. Once SAVEd as a binary file (done by the program if desired), the
routine can be installed elsewhere in memory and it will automatically relocate
itself when first CALLed.

The listing of line number occurrences can be paused by using ESC once. If
used a second time it will exit — whereas any other key will allow the printing
to continue.

IMATCH takes two optional parameters. The first is the search Start program
line number which defaults to the start of the program if omitted; the line num—
ber does not have to be exact (unlike normal BASIC) and if the line specified is
not present then the first one following will be used for the start.

The second parameter is the search End program line number which defaults to the
end of the program; likewise if the specified line number doesn't exist then the
highest one below it will be the last one searched.

The only combinations allowed are :

1) no parameters (whole program search)

2) no Erd line (search from the start line given, to the end of the program)

3) both parameters (search between the start and end lines inclusively)

Two error messages are present:

1) 'Start lirme too high' if the Start line is higher than the last line of

the program or if higher than the End line parameter.

2) 'Check Parameters' if the following search statement or its preceding

are missing.
The full syntax for the command is:
{MATCH [,Start Lire [,End Linel]l: Statement or part statement to be matched
(where [] indicate optiocnal parameters)

I N
IR
Because of the way that the tokenising routine treats inverted commas, the
number and position of these must be correct — each odd numbered quotation mark
will open a string and each even one will close it.
1) To search for a string's contents will only require one set of quotes
eg. :"Hello" will turn up all occurrences of 'Hello' whether by itself
or as part of a larger string
2) To look for a string with it's quotes will require either double inverted
commas (making three sets in all) or the string will need to be embedded in
other tokens
eg. :'"""Hello""" or :PRINT "Hello""'" or :PRINT "Hello" CHR$(7) will each
look for 'Hello' as a string with quotes, together with the other
token(s) etc we have included

Case of letters is important in strings but not for commands or variable names.

Flexibility is provided to allow for equivalence of Variable types, ie.
$ with DEFSTR; ! with DEFREAL and undefined; % with DEFINT and undefined

Numbers must be treated in their entirety. Thus it's not possible to search for
all numbers from 180 to 199 by just using the digit 1; every possible value
would have to be searched for separately I'm afraid with no wildcards.

Line numbers are treated differently from other numbers when they are tokenised,
thus they must always be preceded by a command. GOTO 190@ will work with no
problem, but if we want to look for all occurrences of Line Number 1008, it
must be forced to become a line number. Evidently GOTO 1000 will still only
lock for GOTO 1000 and will ignore GOSUB 1000 or RESTORE 100@. However, the
IMATCH routine has been written to treat EDIT 10090 as just Line Number 1000
and will then find GOTO 1000, GOSUB 100@, RESTORE 1009, etc — the EDIT part
of the statement will be ignored. EDIT by itself can still be searched for,
although it should not normally be present in a program.

27

28

[F11
881
{B31
[541
[4B1]
[eD]

(351

[1E]

{581

[EAT
[8C1
£671
LAR1]
[6F1
£3D1]
{FB1
{491
{173
{731
(E2]
[E4]
(963
[FB1]
CCF1
[4c]
C(FD1
[E7]
£8rF1]
(e1]
[BA]
[36]
[CF1]
[C41
{101
{121
L6E]
£711
[34]
[3C]
[161
[oF]
B3]
[F41
[B21
[1A]
[371
[C&s1
{421
{DD3

I 2T HN
et

Type in the following Program and SAVE it before RUNning:

10
20
30
40

50
&0

70

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

340

360
370
380
390

410
420
430
440
450
460
470
480
490

*MATCH Loader by Bob Taylor

{copyright 1990)
MEMORY HIMEM-2AB:RESTORE 110:PRINT:PRINT'"Please wait a few seconds
FOR 1in=0 TO &2AB/8-1:total=0:FOR n=1 TO B:READ a%$

byte=VAL ("' +a%) :POKE HIMEM+]1ink8+n,byte

total=total+byte:NEXT n

READ a%:IF VAL ("&"+a$)<>total THEN PRINT:PRINT"Error in line"linX1@+

11@:PRINT:END

HIMEM+&30,&93: POKE HIMEM+&31,&CA

NEXT lin:IF PEEK(6)=880 THEN POKE HIMEM+&93,&75:POKE HIMEM+RF2,875:POKE

PRINT:PRINT"All M/C loaded":PRINT:PRINT"Press S to save M/C as
MATCH.BIN":PRINT"or any other key to continue":WHILE INKEY$="'":WEND:IF
INKEY (60)<>—1 THEN a=HIMEM+1:SAVE "MATCH.BIN",B,a,%2A8

PRINT:PRINT"To Load and Initialise IMATCH RSX with a program present
Jjust Enter:":PRINT"MEMORY HIMEM-&2AB:a=HIMEM+1:L.0OAD"CHRS (34) "MATCH. BIN"
CHR$(34)",a:CALL a":PRINT"in Direct Command Mode with the Disc or Tape

inserted at the correct place”
END

DATA 21,34,00,19,06,06,7E,23,11B
DATA ES, 66,6F,19,7E,83,77,23,36E
DATA 7E,BA,77,E1,23,10,EF,44,3C6
DATA 4D,EB, 36

DATA 21,8F,0

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

1
T
m

N
N
[
N
S

28,01,13,DD,23,DD, 23,F5, 331
S, 4E,23,46,78,B1,28, 12, 2FF
23,7E,23,66,6F ,ED,52,E1, 389
30,0A,09,18,E8,21,7E,02, 1E7
18,A9,E1,37,C1,D1,78,3D,420
20,C7,38,9C,ED, 52, 30,98, 3C2
19,ED,53,06,BF, 22,02, BF, 301
ED,SB,S8,AE, 1A, 3D, 20, DD, 3A2
13, 1A,FE,96,20,09, 13, 14,217
FE,20,13,28,02,18B, 1B,E5,276
cD,sB, 02, 38,C8,E1,ED,S3,448
23,F1,CD,@9,3C9
oC,CD,©9,BB,472
FE,FC, 28, 4E3
7,ED,42,3EC

S
T i e e e .

B
3E,22,
01,23,22,184
F1,F1,
ED, 52,

MM W a W W W o

-

REOHURRIABEEES4

. W M W W oA e ow e
M e W W W M w M M ow e ow

CB, 49,28, 3D1

,18,1A,18,26C
,78,B1,28,294

OBPEBSRFARSBEILRS
HSSERE2SBBERSRRSE
5 IRBRHE ST BRBRRE

SNSRI EHRRSYICIAY

R I R ™)

£ N
me

Linechecker
A PROGRAM TYPING AID

All programsin Print-Outhave Linecheck
codes which are enclosed in brackets at
the start of a line. Don’t enter them in as
they’re designed to be used with
Linechecker to eliminate errors when
typing in programs which appear in this
magazine. Please note, all programs will
run whether Linecheckeris being used or
not. For information on how to use
Linechecker, please see Issue Three.

N\ /

{783
D71
[5A]
£191]

510 DATA
520 DATA
330 DATA
549 DATA

(211
(701
{3D3

560

DATA
DATA

-

[7E]1 570 DATA B1,28,BC,EB 9,02,EB,4A3 [Col 770 DATA 28,0E,38,03,1A,18,16,1A,0D3

e
S
o

-

C64F1 S80 DATA 28,38,38,2E,7E,FE,22,3A,29E [S41 780 DATA FE,0D,28,17,C6,02,18,00,237
(921 590 DATA ©5,BF,20,06,2F,32,05,BF,20F [C21 79@ DATA 1A,3C, 18,09, 1A,FE,02,28,187
[FA] 600 DATA 18,20,B7,7E,20,1C,FE,0E,2B5 [4F1 B0® DATA 0A,FE,0B,28,06,FE,04,28,268
[S11 610 DATA 38,72,FE,19,38,14,28,1A,24F [B41 81@ DATA 02,FE,0D,23,08,23,0B,23,18C
(461 620 DATA FE,1D,28,47,FE,7C,28,12,33E [7A] 820 DATA 0B,29,18,15,13,13,1A,E6,17C
[AC1 630 DATA FE,FF,28,0E,FE,1F,38,0E,396 [191 830 DATA DF,BE,28,05,F6,20,BE,20,3BE
(AB] 640 DATA 28,10,3E,01,18,13,18,A4,15E [40] 840 DATA 0A,13,23,08,CB,7F,28,EE,2AB
(551 650 DATA 18,A7,3E,02,18,00,3E,03,162 (281 850 DATA AF,18,AD,CB,7E,23,0B,28, 313
£39] 660 DATA 18,05,3E,06,08,08,08,08,08D [A2] B&O DATA FA,18,A7,1A,FE,22,20,0R,310
[401 670 DATA 0B,0B,CS,47,1A,BE,13,23,230 [B8] 870 DATA 23,13,1A,FE,22,20,03,23,1B6
1971 &80 DATA 20,14,10,F8,C1,3A,04,BF,2FA [731 880 DATA 13,1A,FE,01,00,13,1A,1B,234
[DE1 690 DATA B7,20,89,3C,ED,43,08,BF,393 [S3] 89@ DATA FE,Ce,C8,FE,97,C8,37,09,5E3
(A1l 700 DATA 22,02,5F,18,03,23,10,FD,2FE [731 900 DATA 4D,41,54,43,08,00,43,68,298
[CC1 710 DATA Ct,18,CB, 1A,FE, 1E,20,C6,3C8 [BE] 910 DATA 65,63,6B,20,50,61,72,61,207
[7E1 720 DATA 13,23,0B,7E,23,E5,6b,6F,29C [CO1 920 DATA 6D,65,74,65,72,73,00,53,2E3
[FS1 730 DATA 23,23,23,1A,BE,13,23,08,182 [911 930 DATA 74,61,72,74,20,4C, 69,68, 2FE
611 740 DATA 20,02,1A,BE,13,08,E1,23,21C [C1] 940 DATA 65,20,74,6F,6F,20,68,69,2C8
[SF1 750 DATA 28,CB, 18,MA,FE,0C,28,18,2FF [591 950 DATA &7,48,00,00,00,00,00,00,0CF

[4E1 760 DATA 30, 1A,FE,0B,28,09,FE, 03,285

In the next article in the series I hope to explain the way that the Variables,
Arrays and Strings areas are used in BASIC.

Small dds

DATA PD LIBRARY has around 2 Megabytes of PD software on tape and disc. For the
latest newsletter and full list, send a SAE or 3@p. Or send for the Starter
Pack — over 20 programs to try out, send a SAE, tape/disc and 50p. Cheque/PO
payable to T. Kingsmill at 202 Park Street Lane,Park Street,St Albans,Herts
AL2 2RQ.

PLAY MATES the CPC Games Fanzine, full of reviews, tips and pokes. Now carrying
Bonzo Meddler news also. Order issues 4, 5 and 6 for £2.50 from Carl Surry.,
37 Fairfield Way, Barnet, Herts ENS ZBQ.

WANTED — Soft 968 Firmware Manual to buy — full price offered or costs refunded
for a short loan. Anyone need a 464 manual (some pages in a funny order) 7
Write to: R Bignell, 24 Deangarden Rise, High Wycombe, Bucks HP11l 1RE.

FOR SALE — Amstrad CPC 464 Instruction Manual, as new, £8 + £1 post/packing, or
will exchange for four 3" discs. P.H. Breckin, 161 Longsight Road, Holcombe
Brook, Bury, Lancs BL8 4DA. 'Phone 020488-3443

WANTED — To buy or on loan, Amstrad Action magazines Numbers 18 & 23, plus Xmas
1985, Feb 1987 & Dec 1987. P.H.Breckin — address and phone number as above.

FOR SALE — 2 Homebrew programs, Casino Blackjack (a realistic simulation of the
gambling game) and Wordsearch (a utility for solving wordsearch puzzles) As
reviewed in Print-Out Issue Six. The programs cost £4.50 together, and this
includes the cost of a CF-2 disc. Contact Barrie Snell, 19 Rochester Road,
Southsea, Portsmouth PO4 9BA.

29

30

Christmas Sales

Once again, the CPC news scene seems devoted to the Plus computers which many
national magazine jownalists had tipped as the most popular machine for first—
time buyers this Christmas.

Unfortunately, the figures don't quite support this. It would appear that the
Plus computers, whilst selling in average quantities, did nothing to dent sales
of the 16-bit giants or the aging Commodore 64. It isn't all bad news though, as
most retailers reckon that the Pluses' time will come during the next year; even
though it looks likely that Amstrad will soon release a new 16-bit PC-Compatible
games machine which could take the bottom out of the 8-bit market.

Likewise, the GX-4000 console did not shift in any significant number and did
not even attempt to rival the likes of Nintendo and Sega. However it wasn't just
Amstrad who suffered, as Commodore's console also failed to sell over Christmas.
It was also a dismal time for Amstrad's other 8-bit, the Spectrum, and it seems
increasingly likely that its days are numbered.

Amstrad isn't greatly worried by these facts, adding to the speculation that
the company has something impressive up its sleeve.

Compatibility ?

On the same theme, confusion seems to abound concerning compatibility of both
hardware and software. with Amstrad saying one thing, and independent retailers
contradicting them. Most of the inadequacies of the 464 Plus and 6128 Plus seem
to have been sorted out by WAVE — though at the cost of your warranty — allowing
a disc drive to be used on a 464 Plus, and loading from tape on a 6128 Plus. But
Amstrad have seemed very reticent on these modifications and are unwilling to be
drawn on anything.

Cheaper PD

Public Decmain for the CPC is a thriving business and we can bring you details
of Tony Kingsmill's DATA PD. The copying charge has now been reduced from 2p per
Kilobyte to 1p per K. Also the starter pack has been updated to include some of
the more recent programs. For more information, contact Tony at 202 Park Street
Lane, Park Street, St Albans, Herts AL2 2AQ.

New Articles

Finally, we would like to say that many new series are in the pipeline at the
moment, as a result of letters which we have received. Therefore, we would like
to remind all of our readers that we are always open to suggestions and ideas &
all are considered very carefully.

ﬂ SOUND

An introduction to the CPC’s sound chip

FPart Une

Finally, we have managed to put together the promised series on the various
SOUND commands. In it, we'll be looking at all aspects of 'noise' on the CPC and
this will include special effects, music, and possibly even speech synthesis.

In the last issue, the SOUND command was introduced in a simple form and we
loocked at the various numbers (known as parameters) which can follow it. However
the SOUND command can be far more complicated than it appeared last time and. to
produce realistic music and sound effects, we'll need to lock at its assosciated
commands — namely the Tone and Volume Envelopes.

You may remember that last time I said that a note's volume on a 464 ranged
from 0 to 7 and on a 6128, from O to 15. Now, although this is confusing encugh.
there is another problem. With a volume envelope attached the volume ranges from
0 to 15 on both computers!

However. the actual loudness at the maximum value is the same on both a 464
and a 6128 — the 'levels' of volume are just split up differently. And as we are
dealing with volume envelopes this issue, there shouldn't be any discrepancies.

Valume Envelopes

For this issue's section, we will be working on the note that's produced by
the command SOUND 1,400,150,15 If you type it in and listen to it. you will hear
a sound of pitch 400, which lasts for 1.5 seconds at maximum volume. However, it
1s noticeable how it remains at a constant volume. But in reality, no sound ever
stays at the same volume for its entire duration. and to simulate any changes on
the CPC, we have got to use the ENV (or volume envelope) command.

To hear ENV in action. enter the following line and compare it with before:

EnV 1,5,3,30:50UND 1,400, 150,0,1

You should now hear the note gradually rising from silence to its maximum volume
in the same time of 1.5 seconds. Before looking at the ENV commard, we must look
at the slightly altered SOUND expression. There's now a ,1 put on the end of the
SOUND command and this identifies which of the fifteen available envelopes is to
be used for that particular note. Also the volume has been set to 0, and this is
now the start volume on which the envelope acts.

Note that this volume envelope does not have to be redefined every time vou
want to play a note. but is instead stored in the computer's memory, ready to be
used at anytime. You can check this by just typing in: SOUND 1,400,150,0,1

31

So what is a volume envelope? Firstly, it is very important to realise that
the ENV command produces no sound on its own, but only defines a volume envelope
which can be used by the SOUND command at a later date. To prove this, using the
same envelope as before, retype ENV 1,5,3,30 and you should hear nothing. But if
you now enter SOUND 1,400,150,0,1 you should hear the note gradually increasing.

But how do we get those numbers which follow the ENV command? If you listen
to the note again (type SOUND 1,400,150,0,1), you should notice five changes (or
STEPS) in the volume.The note’'s volume increases in steps of three and each step
lasts for 0.3 seconds. Thus the simplest form of the ENV command has the syntax:

ENV N,P,Q,R

N is a number between 1 and 15 and identifies which envelope is tc be defined.
This number is also attached to the end of the SOUND command to tell the CPC
which envelope it is meant to use.

P is the number of steps there are. There can be upto 127 of these steps in an
envelope, but in our example above. there are five steps.

Q tells the computer how much it is to increase or decrease the volume in each
step. In our envelope the volume was to increase by three in each step. This
parameter can have any value between —128 and 127.

R informs the computer of how long each step is to last.Like the duraticn of a
note, it's measured in hundredths of a second and can be any value between O
ard 255. In the envelope above it is 30, which equates to 0.3 secords.

Now that we know what the numbers mean. all we've got to do is to try and decide
what values to put in our ENV command. The best way of doing this is to draw cut
what we want the sound to be like, in terms of volume (see Figure I). Next we've
got to divide 1t up into a number of steps (P) and finally measure how long each
step lasts (R) and the volume increase or decrease (Q).

5 Using the envelcpe ENV 1,5,3,30:
This causes the note fo increase
127 to 1ts maximum volume in the 1.5
seconds that it is playing. This

9— diagram shows why.
6 — There are five steps, each lasts
30/100ths of a second (ie 0.3 of
3m a secornd) and with each step the
volume increases by three volume
///// ‘levels'. As a result the volume
Y 1 T | T | T, goes from O (silence) to 15 (its

0 03 06 09 12 15 18 2-1])
maximum) in 1.5 seconds. However

the increases are not smooth but are jerky and distinct. It is important to have
this in mind when designing sound effects and sound envelopes.

32

Listed here are some more

envelopes which you might
like to try. Each of them
can be heard by entering:
SOUND 1,400,150,0,n
where 'n' is the required
envelope number.
ENV 2,15,1,10
ENV 3,2,6,735
Here are a few which have
decreasing volumes. These
must be started off with:
SOUND 1,400,150, 15,n
And these envelopes are:
ENV 4,15,-1,10
ENV 5,5,-3,30

r

\. J

N

AY-3-89I1c sound chip

The CPCs all use the AY-3-8912 scund chip (as does
the Atari ST) and, although designed over 10 years
ago, this sound chip 1s capable of producing quite
respectable 3—channel music and sound effects - in
fact it was first used in coin—op arcade machines.
However the Plus computers, despite using the same
chip, include some major improvements to the sound
quality. Firstly the monitors have built—-in sterec
speakers and this provides amplification & clarity
The 'custom chip' at the heart of the Pluses extra
capabilities plays the tunes & effects without any
intervention from the processor, thus allowing the
games to be played even faster.

At the =start of this article. I said that a note's volume must be between O
and 15. but this is not strictly true. All of the examples given upto this point
have kept the volume between these two figures. but what happens if we let 1t go

outside these?

Try it ard see usirg:

ENV 6,30,1,5:80UND 1,400, 150,0,6

The volume increases to its maximum loudness of 15 and then. because the CPC's a
cunning beast. it loops back to 0 and then continues to increase the volume from

there!!

It also works the other way: ENV 7,30,-1,5:80UND 1,400,150,15,7

This can be useful when designing sound effects. For example. the envelope below
could be used as a machine gun firing: ENV 8,75,4,2:80UND 1,400,150,0,8

In all of the examples given so far, the duration of the sound has been 1.5
seconds. Similarly. the envelopes have all been designed to last for 1.5 seconds
— vou can see how long they are meant to go on for, by multiplying the number of
steps (P) by the length of each step (Q).

Of course, you can make the sound play for a longer or shorter time than is
required by the envelope by altering the duraticn in the SOUND command, and this
can produce some interesting results.

If you set the duration in the SOUND command to zerc. however, the envelope

then controls the length of the note on its own. Thus, this cures the problem to
a certain extent - but more on it 1n a later issue.

We have now looked at making sounds get either louder or quieter in detail.
However, in real life, sounds don't just increase or decrease in volume; they do
both. With our simple ENV command, it is not possible to mimic this and so there
is a far more ccomplicated form of ENV available to us. In Issue Nine, we will be
looking at this, and also studying some ways of making music on the CPC!!

33

g Ll PPN I L T IR R A I e TN CE - TG G, —

Over the past few months we've received so many letters about the Artist Designer
program that we have dedicated these two pages to various modifications that can
be used to improve it.

Here then are your suggestions, problems and our replies:

AR7IS7 DESIGNER
e

I typed it in without Linechecker and I inevitably made a few typirg errors,
most of which I have sorted out. There remained one or two 'bugs' which may not
appear on the tape/disc. However, this is what I found:

1) On saving a picture to tape/disc, the filename was corrupted. On introducing
the line 25 OPENOUT "d":MEMORY HIMEM~1:CLOSEQUT this cured the problem.

I then had to change line 2520 to 2320 IF my>381 AND my<39% THEN RUN 30

to avoid having to keep a disc in the drive on 'ERASE PICTURE'.

2) LOAD/SAVE menu was staying up on 'CHANGE FILENAME' and 'EXIT MENU'. Line 340
needed to be changed to 340 IF mopt=1 THEN 350 ELSE CALL &900C

R. BIGNELL, HIGH WYCOMBE

PRINT-OUT: On my 6128, the first problem did not occur, but I think that it may
be something to do with a bug in the 464's Operating System when used with a
disc drive. Still if any reader has this problem, the above correction would
seem to do the trick. The secord bug., however, was our fault and somehow the
line got corrupted. This even got onto some of the early program tapes/discs.
Printed below are some modifications which allow the cursor to be speeded up;
to move the cursor at 5 times its normal speed, press CTRL and a cursor key.

[A4] 1990 IF INKEY(8)=0 AND x>2 THEN x=x-2

[45]1 15395 IF INKEY(8)<>128 THEN 1600 ELSE IF x>19 THEN x=x—-10 ELSE IF x>9 THEN
X=xX—-2

[12] 1600 IF INKEY{(1)=0 AND x<&620 THEN x=x+2

[4B] 1605 IF INKEY(1)<>128 THEN 1610 ELSE IF x<61Q THEN x=x+10 ELSE IF x<&20
THEN x=x+2

[F1] 1610 IF INKEY(@)=0 AND y<391 THEN y=y+2

[13] 1615 IF INKEY{(2)<>128 THEN 1620 ELSE IF y<381 THEN y=y+10@ ELSE IF y<391
THEN y=y+2

[A4] 1620 IF INKEY(2)=0 AND y>30 THEN y=y—2

[871 1625 IF INKEY(2)<>128 THEN 1630 ELSE IF y>40 THEN y=y-10 ELSE IF y>30
THEN y=y-2

(841 3880 IF INKEY(8)=0 AND x>2 THEN x=x-1

[7B] 3885 IF INKEY(B)<>128 THEN 389Q ELSE IF x>19 THEN x=x-10 ELSE IF x>9 THEN
x=x—1

[OC] 3890 IF INKEY(1)=0 AND x<L20 THEN x=x+1

[8B1 3895 IF INKEY(1)<>128 THEN 3900 ELSE IF x<610@ THEN x=x+10 ELSE IF x<&20
THEN x=x+1

{B4]1 3900 IF INKEY(2)=0 AND y<381 THEN y=y+1

[C3] 3905 IF INKEY(©)<>128 THEN 3910 ELSE IF y<371 THEN y=y+10 ELSE IF y<381
THEN y=y+1

(831 37910 IF INKEY(2)=0 AND y>30 THEN y=y-1

[AD] 3915 IF INKEY(2)<>128 THEN 3920 ELSE IF y>40 THEN y=y-10 ELSE IF y>30

34

THEN y=y-1

U icNE T oD

SN

Many people have written in requesting a Screen Dump routine for use with the
Artist Designer program in Issue 6 of Print-Out. The Screen Dump described here
is intended for MERGEing with ‘Artist' only. It will give an inverted print-out
(black Ink on white Paper) of the work area across a sheet of A4 paper.

Type in and SAVE the BASIC listing below. (It is not a complete program, and
will do very little by itself). LOAD the original Artist program, and then MERGE
this new routine with it. When the main program is RUN, it will install the new
Machine Code routine ready for your Screen dumps.

To perform a dump any time that the cursor is present on the work area, Just
use CONTROL and D together. To stop a dump before it is completed, hold down the
DEL Key until the Printer stops.

For future use, once the new lines have been proved to be correct just repeat

the LOAD and MERGE sequence and then SAVE the resulting program.

Due to the geometry of the DMP 2000 Printer, circles will be flattened when they
are printed with an aspect ratio of 6:5. This is due to the spacing of the pins
on the print head, and also seems to afflict the STAR LC10 Colour Printer (and,
I suspect quite a few others).

The only solution to this problem would result in a much larger print-out (30
times bigger)., requiring many sheets of paper to be cut and joined together, and
I feel that this is somewhat excessive for the reguirements of the program.

Another problem with the DMP 2000 is that it cannot tolerate continuous hori-
zontal lines of graphics — it will miss out every other dot. The result of this
is that both the Complete Fill and Dense Speckle fills appear almost identical.
so any designs prepared for dumping need to have this taken into consideration.

[FB1 1655 IF INKEY(61)=128 THEN TAG:MOVE ox,o0y:PRINT CHR$(232);:CALL ¥9247:MOVE
ox,o0y:PRINT CHR$(232);:6G070C 13%9¢
[F1] 3940 ’PATTERN FILL and SCREEN DUMP Loader by Bob Taylor for PRINT-0OUT
[6A] 3960 FOR 1in=0 TO &2A8/8-1:total=0:FOR mn=0 TO 7:READ a%$
[441 4681 DATA ©0,00,00,00,00,09,00,00,000
(DBJ 4682 DATA ©0,CD,2E,BD,30,09,CD,0%,2C7 mlprogramsinPrint-OuthavcLinecheck\
{7D] 4683 DATA BB,FE,7F,28,74,18,F2,3E,41C codes which are enclosed in brackets at
(933 4684 DATA 1B,CD,D4,92,3E,40,00,D4,46D | the start of a line. Don’t enter them in as
{741 4685 DATA 92,3E,1B,CD,D4,92,3E,41,39D they’ desi d to be used with
[DC] 4686 DATA CD,D4,92,3E,06,CD,D4,92, 460 cy e designec 1o
[7F1 4687 DATA 06,1E,21,7E,01,11,01,00,0D6 Linechecker to eliminate errors when
(411 4688 DATA CS,ES,01,03,7E,3E,18B,CD,352 | typing in programs which appear in this
Eggl 4689 DATA D4,92,3E,59,CD,D4,92,78,4A8 | magazine. Please note, all programs will
] 4699 DATA CD,D4,92,3E,02,CD,D4,92,4R56 : : :
(78] 4691 DATA E1.E5.3E.02.05.D5.E5.F5.57A run whether Linecheckeris being used or
[AC] 4692 DATA CD,F0,BB,B7,Cl,78,28,01,491 :
[BS1 4693 DATA 37.E1,D1,2B,2B,17,30,6D,373 | Linechecker, please see Issue Three.
[F7]1 4694 DATA CD,D4,92,13,C1,10,E1,0D, 405
[9F] 4695 DATA 20,DE,23,23,3E,9R,CD,D4,32D N 7/
[EE] 4696 DATA 92,3E,0D,CD,D4,92,F1,C1,4C2
{281 4&97 DATA CD,99,BB,FE,7F,28,02, 10,348 | ' u
(741 4698 DATA AC,3E, 1B,CD,2B,BD,3E, 49,338
[E71 4699 DATA CD,ZB,BD,C?,CD,2B,BD,D8,50B el
{9A1 4700 DATA CD,09,BB,FE, /,20,FS,F1,514 % \
[4E1 4701 DATA 18,E7,00,00,00,00,00,00,0FF | —= - - D

not. For information on how to use

/A Intro to RSXs part 4
Using and Programming ROMs

by BOB TAYLOR

In the first three articles in this series. we have covered Initjalisation,
Error Handling, passing and retrieving Parameters and finally Relocation. Until
now, the RSXs we were considering were intended to be loaded into RAM. However,
RSXs can also be installed in ROMs so providing permanent access to their extra
commands; in fact, any RAM resident RSX could be put into ROM form.

WHY PUT RSXS ONTO ROMS ?

The most obvious advantage is that no time need be spent LOADing & initialising
the RSX routine — it is instantly available for use. Anocther reason is that the
space which had to be reserved for the routine in RAM is no longer required, so
allowing more room for the BASIC program and its variables and strirgs.

Are there any disadvantages? Of course! The main stumbling block for most people
is the extra hardware needed to place the routine into a ROM, and then to run it
there; I refer to the ROM Blower and ROM board respectively. Once installed in a
ROM another drawback will eventually become apparent: if any bugs are discovered
in the code, or if the routine needs to be enhanced to meet changing situations,
the routine cannot be altered.

A further minor drawback is that the routine is accessed slightly slower than it
was when in RAM. The reason for this is that the Operating System, on encounter—
ing an external command (as all extra commands preceded by the "!" character are
called) looks first at any RAM RSXs for a match and, on not finding one, it then
looks through each ROM in turn, starting with that at the lowest Select address:
therefore, it will take that much longer before it is matched and can be used.
This extra delay isn't large but should be borne in mind if the external command
is one which requires fast servicing or which occurs many times within a loop in
BASIC.

Let us suppose that these drawbacks do not detract from the positive advantages
of ready access and increased free memory. so...

HOW DO WE WRITE FOR A ROM ?

The ROMs which we are referring to are meant to be installed as sideways
ROMs (see later). Given the correct hardware, a ROM Board, it is possible to fit
ROMs in any of 252 positions, each position being given a single byte address —
called its ROM Select address.

36

Background ROMs (the type for which RSXs should be written) can be placed any-
where in Select addresses &09 to &OF on the 6128 (&01 to &07 for the 464). Above
these addresses, only Foreground ROMs can be fitted, and then only at the first
available position; they can also be fitted randomly in the lower addresses just
as the Background ones can.

Firstly the routine itself will usually be identical for both medium. Apart from
the fact that the Stack Pointer will be moved down 8 bytes from its start posit-—
ion instead of 6 in the case of a RAM RSX. every point mentioned in the previous
articles relating to parameters passed. and use of registers still applies — and
as it's not normal to need to access the stack, we can thus discount that slight
difference.

Secondly the initialisation routine is not required. Instead, the command name &
the jump address are included in the existing name table and command tables pre—
sent in the ROM.The command table takes exactly the same form as it did with RAM
based RSXs: a two byte address of the start of the list of names of all commands
present in the ROM, followed by a list of JumP instructions to the routines ser-
vicing those commands. Note that all commands must be present in this one list —
a second list is not allowed. However there's no limit to the number of commands
which a ROM may have in its one command table — the limit finally comes down to
how many routines can be squeezed into the 16K available in a full sized ROM.
Thirdly, of course, there is no need for a re-location rcutine to alter absolute
addresses; this work will have been done during the writing and proving stage.

WRITING COMMAND ROUTINES

Due to the permanence of ROM routines. a complete & thorough testing of the
routine in RAM is essential. It's fortunate then that RSXs in RAM or ROM require
identical routines. so enabling testing to be carried out in RAM before transfer
to ROM. It is also helpful that RSX routines can be CAlled instead of needing to
be initialised as RSXs.Both of these conspire to allcw the routine to be written
for any convenient area of RAM during most of its stages.

An Assembler is most useful for such work and if the routine is lengthy, will be
indispensable in 're-directing' the code to its final position, once development
has been completed. The need for this re-direction is as follows. The RAM avail-
able for writing the code in runs from &0176 to &ABFF at most (although standard
practice is to use the block &§4000 to &7FFF because this matches the final dest—
ination for the code with an simple offset of &8008). The ROM on the other hand
will be located at &C000 up to &FFFF.

Once it has been tested, some sort of re—location will be needed for the routine
to run in ROM. Modified re-location routines, of the types suggested in previous
articles might do for this purpose, but would probably become quite unwieldy if
large numbers of addresses have to be changed. This is where Assemblers come in.
Most have a facility for storing code at one place in memory while being able to
modify addresses as if it had actually been assembled at another area of memory.
and only at the last assembling would this have to be used.

37

38

(An alternative to this method of working is to use what is called sideway;\
RAM. The extra ROMs which are plugged into ROMboards at the back of ocur CPCs
are known as sideways ROMs; the reason for this is that if the memory map of
our computers is drawn cut, such ROMs will be positioned alongside the BASIC
ROM which is itself alongside the upper 16K of RAM - usually used for Screen
Memory. Sideways RAM is RAM connected in place of one of these sideways ROMs.
Being RAM it's alterable (with suitable software) & being in place of a ROM.
it will be run by the operating system as if it actually were a ROM. T use a
proprietary version of this system called an AMRAM; it's no longer available
unfortunately, nor is anything identical made by anyone else. However, there
is a device called a RAMROM, produced by Microstyle, which has twe 16k side—
ways RAMs switchable to different ROM Select positions. One disadvantage it
has compared to the Amram is that it requires toc be re-loaded with code each
time the computer is switched on (mine has a battery to maintain the data at
all times). Using such a device, it's possible to write code at the location
it is intended to run.

J

The first few bytes of a ROM need to contain a certain sequence of values:

&Lo000 byte of @1 This signifies that the ROM is a background ROM.
&LC001 byte giving ROM mark No (user selectable)

&2 " " ROM version No " "

& Co03 ! " ROM modification level " "

&Co04 2 byte address of start of list of Command Names
L0066 JumP inmstruction to ROM initialisation routine

L0 " " " first command’s handling routine
LCOOC " " " next command’s routine
etc

There are several other possibilities for the ROM type 'byte’ at &C000. although

not ones that we can use in our context:

&0 for foreground ROM. This type of ROM use also allows external commands to
be present in a Command Table. However once invoked, control is taken from
the calling program and doesn't return to it — not much use in BASIC

&80 special type of foreground ROM that is reserved for the resident operating
language of the computer — in our case BASIC

§02 for extension ROMs. These are used in a very long foreground program which
cannot be contained in one 16K ROM, extra ROMs containing the rest of this
program can be placed at the next 3 ROM select addresses & given this type
byte. This allows faster access from one of these ROMs to another by using
RST 2 instructions

NCTE The Mark, Version and Modification bytes are completely at the disposal of
the user — I usually use them for the date instead, as their 'proper' use
still requires extra written information including the date.

The list of Command Names pointed to by the address at &C004 is mostly identical
to that for RAM RSXs: each letter is in capitals with the last character of each
name having bit 7 set,the last name is followed by a byte of &20. The difference
is that the first name of the ROM list is for the ROM initialisation routine and
in standard practice, this should not be available to be invoked from BASIC. To
this end it is normal to include a Space within the name and this will make it
impossible to call. However, it is a rule which could be brcken. If ycu should
happen to write an initialisation routine which is also useful from BASIC, there
is no reason why a Space should be included.

The main purpose for the initialisation routine is to allow it to reserve
working space in RAM. On entry, which is from the Operating System only, DE and
HL contain respectively the lower and upper limits of free RAM. Working space is
reserved by moving the lower limit upwards or the upper limit downwards (or even
both), by altering the values of DE or HL on exit. What use is made of any space
reserved is entirely up to the user - however on entry later to any RSX routine
in that ROM, IY will hold the address that was contained in HL on exiting the
initialisation routine (allowing simple indexing to up to 127 bytes of reserved
memory) .

Other uses for the initialisation routine include setting up any routine
variables (perhaps in the reserved memory area), and printing any messages. On
returning to the Operating System from the initialisation routine, the Carry
flag must be set.

The alternative ways of using the JumP block discussed in previous articles
could also be applied to our ROM. However in general, as the ROM space is not at
such a premium, I always use the JumP block in the conventional way.

Routines running inside a ROM perform more or less as they did when in RAM.
However, depending upon whether the ROM board causes 'Wait' states to enable it
to use slower EPROM chips, the actual routine may run slower.

Writing to memory above S&BFFF affects the Screen memory, even though a ROM,
occupying the same range of addresses. may be enabled. But any 'READ' operations
(with the ROM enabled) would be made from the ROM and not the underlying Screen
RAM. To eliminate this problem, should a Screen 'READ' be required, a CALL is
needed to a routine in RAM which will temporarily switch off the Upper ROM, read
from the Screen RAM, switch on the Upper ROM again and RETurn to it. Fortunately
for us, such a routine is already available in the Firmware in the form of RST 4
— RAM IAM. This will read one byte at a time from the address held in HL.

Access to other ROM's routines which also occupy the same area of memory as
our ROM, is also catered for in the Firmware with the RST 3 FAR CALL. This oper-
ates very much like the CALL to &@01B we used with Error Handling in the first
article in this series, but with the advantages that the C and HL registers are
left free for passing more data. This is done by placing the routine address and
ROM Select No (which HL and C held with the &@01B CALL) in a three byte data
block called a Far Address. The RST 3 instruction itself is followed by the
address of this data block and a CALL into the other ROM's routine is performed
by the Operating System, temporarily switching off our ROM.

39

Similarly, the Lower ROM is available to the Upper ROM, either directly by
enabling the Lower ROM, and retrieving data from it or CALLing a routine in it,
or by the indirect facilities provided by RST 1 or RST 5. These both perform a
JumP operation and not a CALL. For this reason, they cannot be included in a
sequence of code, but need to be situated separately and CALLed from within the
sequence — it is essential that the routine being used in the Lower ROM will
terminate with a RET instruction to return control back to our calling ROM.

A feature of these Firmware RSTs is that all switching of ROMs 1is carried
out by the Firmware as is the restoration of the original various ROM states
after the RST has been performed. Use of the central 32K of RAM by the ROM for
data or routines, does not require any use of RSTs as there is no need to alter
any ROM selection.

USING RSXS FROM M/CODE

The location of an RSX routine can be ascertained by making the HL register
point to a copy of the RSX name in RAM, and then calling the Firmware's KL FIND
COMMAND at &BCD4.0n exit from this CALL, HL will point to the start of the rout—
ine (via its JumP block entry), and C will hold the Select Address of the ROM
containing the routine if it is in ROM (the programmer will need to know if the
routine is in RAM or ROM). The Carry flag will be set if the RSX is found. If it
is, the routine address and Select Address can be installed in a Far Address in
RAM for a RST 3 to access an RSX in ROM.

An RSX in RAM is easier to use, although not just with a 'JP (HL)' as this
would leave no Return address on the stack. Rather, a CALL is needed to any loc—
ation conveniently having the JP (HL) instruction (eg. CALL &Q01E).

If the RSX requires no parameters, its use is quite straightforward. RSXs
with parameters can be run in the same way, but the expected parameters must be
assembled in a form usable to the RSX. They need to be arranged as a block of 2
byte values. with low byte before high byte. and with the last parameter at the
lowest address and the first at the highest. This parameter block can be in RAM,
or in the same ROM as the calling routine. However it should not be part of the
machine stack as it is in BASIC. The IX register should point to the low byte of
the last (lowest) parameter & the A register must hold the number of parameters
in the block. The values of the parameters should be what the routine expects of
course, in accordance with the information given earlier in this series.

RSXs in RAM or ROM are really intended to be accessed from BASIC and retuwrn
to BASIC when serviced. Usually, they extend the range of functions available to
BASIC, either to make up for deficiencies or to create exotic extra facilities.

Sometimes however they can provide non—BASIC utilities like Word Processors
or Monitors which seem to take over the whole machine while they are running.
Which ever use you find for RSXs, the provision for extra commands has certainly
erhanced our computers and I hope that this series of articles may have prompted
you to think about writing your own R5Xs.

40

Offers

Please make all cheques payable :
to Print-Out but any postal orders (::::)
should be made out to T J Defoe as
this saves the Post Office a great
deal of time and effort. Unless it
cannot be avoided, it is advisable / O OO\

not to send cash through the post.

ISSUE NINE.

If vou wish to order a copy of Issue Nine in advance. you may do so by sending a
cheque / postal order for £1.10 to the usual address. With luck we will have it
published by about 30th February and it will be forwarded to you as soon as it's
available. Program tapes and discs are also available in advance.

PROGRAM TAPES/DISCS

We supply both program tapes and discs for ALL issues of Print-Out (including
back issues). The prices also include a booklet to explain how the programs work
plus postage and packing. The cost for each of the program cassettes is:-

a) A blank tape (at least 15 minutes) and 30p (p+p)
or b) £1.00 (which also includes the price of a tape)
And the cost for each of the program discs is :—
a) A blank formatted disc and 50p (p+p)
or b) £3.00 (which also includes the cost of a MAXELL/AMSOFT disc) *

BACK GOPIES

We've still a supply of ALL back issues of Print-Out available and the price
is £1.10 which includes postage and packing. Alternatively you can order both a
back issue and its corresponding tape or disc by sending:—
a) £1.75 - includes the tape, the required issue and postage and packing.
or b) £3.75 — includes the disc (genuine MAXELL/AMSCFT disc) * and also the
required 1ssue and postage.

* When ordering using this particular method please allow about 21 days for
delivery as we must rely on outside suppliers for the discs.

* Please also note that one side of one CF-2 disc will hold all the programs
from upto six issues. Therefore, the cost is £3.00 for a disc plus one set
of programs and then 50p for each additional issue thereafter.

41

There are two forms of subscription to Print—Out available and they are:—

a) Three issues — approximately half a year

b) Six issues — approximately a full year
Although we do try and produce one magazine every two months this is not always
possible due to other ocutside engagements and therefore exact release dates are
noct given in the magazine. Because of this, we are unable to guarantee that six
issues will be produced in a year, or three issues in half a year. However, for
a year's subscription you will be sent six issues no matter when they are publ-
ished, and the same applies to a half-yearly subscription. If we stop producing
the magazine. we promise to refund the cost of all umailed issues.

The prices for subscriptions to Print—-Out are as follows :—

NO OF ISSUES UNITED KINGDOM EUROPE REST OF THE WORLD
SINGLE £1.10 £1.50 £2.00
THREE ISSUES £3.30 £4.50 £6.00
SIX ISSUES £6.60 £9.00 £12.00

Send to: Print-Out,8 Maze Green Road,Bishop's Stortford,Herts.

NAME (block capitals please)
AR S . e

...

...

Please send me the following items :—

DESCRIPTION ISSUE NUMBER QUANTITY PRICE EACH PRICE
TOTAL PRICE
I enclose a cheque/postal order/cash to the value of £....... Please make all

cheques payable to PRINT-OUT & make postal orders out to T. Defoe. Thark vyou.

NB: Please include any details of a subscription to Print-Out in the above
order form. Please write the issue you wish your subscription to start
with in the ISSUE NUMBER column, and the length of the subscription in
the quantity column.

	Page 01
	Page 02
	Page 03
	Page 04
	Page 05
	Page 06
	Page 07
	Page 08
	Page 09
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

